NOTES FOR SEPTEMBER 21

RACHEL KARPMAN
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1. CONCLUSION OF THE PROOF OF THE RATIO OF ALTERNANTS FORMULA
Last time, we defined p = (n —1,n —2,---,2,1,0). We have an action of S, on Z" by
v*(a) = v(@) + v(p) - p
To finish the proof of the ratio of alternants formula, we must show the following.

Lemma 1.

v 1 A=«
Z (_1) K)\v*(a) = {0

otherwise
UESn

We will prove this by a sign-cancelling involution. Let T}y, be the SSYT of shape A with all 1’s
in its first row, all 2’s in its second row, and so on.

1 (... 1‘

Thigh =

n

Then Th;gp contributes to the a = X term. Our involution will be defined on SSYT'(A)\{Thign},
and will switch each tableau of content v with one that has content s} () for some s;.

Recall that s; is the permutation that switches ¢ and ¢ 4 1, so the action of s corresponds to
keeping one i + 1, and switching the rest of the i’s and ¢ + 1’s. Thus

S;F(fyla"' » Yir Vit+1, 7'7714) = (717"' y Yi+1 _17775—1_1"" >’77L)

For example, if (v;,vi+1) is (2, 10), s¥(7)ii+1 will be (9, 3).

Now look at a tableaux T' of shape A, and find the highest row that doesn’t match T},4,. Look
at the last element of that row (shown in blue). This will be ¢ 4+ 1. Let T contain r copies of ¢ and
s copies of 7 + 1.

The boxes labeled i and i + 1 in T form a smaller tableau within 7' (shown in red below),
containing r copies of ¢ and s — 1 copies of ¢ + 1. We switch this inner tableau with one that has
s — 1 copies of i’s and r copies of 7 + 1 using the Bender-Knuth involution. So the new tableau as

a whole contains s — 1 copies of ¢ and r + 1 copies of 7 + 1.
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This process changes the content of T by s;. There are no ¢’s or ¢ + 1’s in the rows above the
row where we differed from Tj,;4,. If the difference occurs in the k" row, then i +1 > k. The
elements in previous rows still match Tj;4,. Elements in previous rows are 1,2,---,k — 1. So the
highest rows still match T},;4,. The kth row still doesn’t match T} because it still has the rightmost
element, so the operation is self-inverting. The lemma is proved, and the the ratio of alternants
formula follows.

2. SCHUR FUNCTIONS ARE ORTHONORMAL

We recall the Jacobi-Trudi formula

Py huet - hp )
h#2—1 h#2
Sp = . . = Z (_1)whw*(,u)
: : ’ wWESy
Py —(n-1) o
n . ha  hs
(Note: for o € ZZ,, the notation h, means hsort(a)- For example, so; = P ho1 — hos
= 0
We define
¥ if w* is a permutation of A
Ly, = Z (1) (1)
0 else
wESn
so we have
Sp = Z L)\'uh/\.
A a partition
We also just proved
1 A=0
> (D Koy =
0 else
wGSn

SO
E KAVLVQ = 5)\a-
v

If two square matrices obey AB = Id, they also' obey BA = Id, so
> LawKip = O
K

As a consequence
E L,\,{S,{ = m).
K

Let (, ) be our standard inner product. Let (, ) be the inner product where the Schur functions
are orthonomal. Then

<m)\,8u>= m)\,ZLxuh}\/ :L/\H and (m)\,su): ZLA,{SH,S# ZL)\M
N K

By linearity, we have (f,g) = (f,g) for all f,g € A. O

1t often happens in combinatorics that AB = Id has a simple combinatorial proof and BA = Id does not.
Loehr and Mendes, Bijective matriz algebra, Linear Algebra Appl. 416 (2006), no. 2-3, 917-944 give an algo-
rithm which, given as input a sign canceling involution proving AB = Id, produces as output a sign canceling
involution proving BA = Id. Loehr and Mendes motivating example was to find a combinatorial interpreta-
tion of > LxxKky = dau. To my knowledge, no simpler interpretation is known. See also the discussion at
http://sbseminar.wordpress.com/2010/07/26/a-proof-length-challenge/
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3. CONCLUDING REMARKS

This paragraph added by David. I can’t remember whether I made this argument on Sept 21 or
Sept 14, but it should be recorded somewhere. Let L be the part of A in degree n for some fixed
n, so L =2 ZN as an abelian group. Suppose that we have some other orthonormal basis ty for L.
Then t) is some permutation of £sy. Proof: Write ty = > caus,. Then (ty,ty) = Zu C?\u =1,
indicating that precisely one of the ¢y, is =1 and all others are zero. So t\ = Asy for some X'
Moreover, if A # p, then (ty,t,) =0, so X' # p' and we see that A\ — ) is a permutation.

Something David should have mentioned but didn’t. Suppose that we have a sequence of homoge-
nous symmetric polynomials ¢; with integer coefficients, obeying [](1 — z;y;)™! = > ti(z)t:(y).
Then the same proof shows ¢; contains +s) once for each A, plus possibly some copies of the zero
polynomial. We don’t need to check first that ¢; is a basis for A.

On problem set 1, problem 5, we show that w preserves the inner product on A. So w(sy) = £sy
for some A'. On problem set 3, problem 3, we will show that w(sy) = s{. Sketch of proof: The
Jacobi-Trudi identity gives sy as a determinant in the h’s, so we can express w(s)) as a determinant
in the e’s. Problem 3 evaluates that determinant and shows that it is s,r.

3.1. A remark just for the fun of it. Suppose we have L = Z~ with inner product L x L — Z
which is symmetric, positive definite, and has dual bases e; and f; both in L. We might expect
that this would force a self-dual basis in L, but this is not the case.

For a counterexample, consider the matrix

[2 -1 0 0 0 0 0 O]
-1 2 -1 0 0 0 0 0
o -1 2 -1 0 0 0 O
o 0 -1 2 -1 0 0 O
o o o0 -1 2 -1 0 -1
o o o o0 -1 2 -1 0
o 0 o0 o o -1 2 0
o 0 o0 o0 -1 0 0 2
corresponding to the graph
e —0 — 0 — 0 —0—0— 0o

The matrix is symmetric, positive definite, and has determinant 1. But if ( , ) is the inner
product corresponding to this matrix, then for any v = (vy,...,vg) we have

(v,v) :221112—2 Z (i
(4,7) in graph
and is hence even for all v (so in particular cannot be equal to 1).



