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1. Conclusion of the proof of the Ratio of Alternants formula

Last time, we defined ρ = (n− 1, n− 2, · · · , 2, 1, 0). We have an action of Sn on Zn by

v∗(α) = v(α) + v(ρ)− ρ

To finish the proof of the ratio of alternants formula, we must show the following.

Lemma 1. ∑
v∈Sn

(−1)vKλv∗(α) =

{
1 λ = α

0 otherwise

We will prove this by a sign-cancelling involution. Let Thigh be the SSYT of shape λ with all 1’s
in its first row, all 2’s in its second row, and so on.

Thigh =

1 1 1 · · · 1

2 2 · · · 2

3 3 · · ·
...

n

Then Thigh contributes to the α = λ term. Our involution will be defined on SSY T (λ)\{Thigh},
and will switch each tableau of content γ with one that has content s∗i (γ) for some si.

Recall that si is the permutation that switches i and i + 1, so the action of s∗i corresponds to
keeping one i+ 1, and switching the rest of the i’s and i+ 1’s. Thus

s∗i (γ1, · · · , γi, γi+1, · · · , γn) = (γ1, · · · , γi+1 − 1, γi + 1, · · · , γn)

For example, if (γi, γi+1) is (2, 10), s∗i (γ)i,i+1 will be (9, 3).
Now look at a tableaux T of shape Λ, and find the highest row that doesn’t match Thigh. Look

at the last element of that row (shown in blue). This will be i+ 1. Let T contain r copies of i and
s copies of i+ 1.

The boxes labeled i and i + 1 in T form a smaller tableau within T (shown in red below),
containing r copies of i and s − 1 copies of i + 1. We switch this inner tableau with one that has
s− 1 copies of i’s and r copies of i+ 1 using the Bender-Knuth involution. So the new tableau as
a whole contains s− 1 copies of i and r + 1 copies of i+ 1.
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1 1 1 1 1

2 2 2 3 3

3 4 4

4

7→

1 1 1 1 1

2 2 3 3 3

3 4 4

4

This process changes the content of T by s∗i . There are no i’s or i + 1’s in the rows above the
row where we differed from Thigh. If the difference occurs in the kth row, then i + 1 > k. The
elements in previous rows still match Thigh. Elements in previous rows are 1, 2, · · · , k − 1. So the

highest rows still match Thigh. The kth row still doesn’t match Ti because it still has the rightmost
element, so the operation is self-inverting. The lemma is proved, and the the ratio of alternants
formula follows.

2. Schur functions are orthonormal

We recall the Jacobi-Trudi formula

sµ =

∣∣∣∣∣∣∣∣∣
hµ1 hµ1+1 · · · hµ1+(n−1)
hµ2−1 hµ2 · · ·

...
...

. . .

hµn−(n−1) hµn

∣∣∣∣∣∣∣∣∣ =
∑
w∈Sn

(−1)whw∗(µ)

(Note: for α ∈ Zn≥0, the notation hα means hsort(α). For example, s21 =

∣∣∣∣h2 h3
h0 h1

∣∣∣∣ = h21 − h03
We define

Lλµ =
∑
w∈Sn

{
(−1)w if w∗(µ) is a permutation of λ

0 else

so we have

sµ =
∑

λ a partition

Lλµhλ.

We also just proved ∑
w∈Sn

(−1)wKλw∗(α) =

{
1 λ = 0

0 else

so ∑
ν

KλνLνα = δλα.

If two square matrices obey AB = Id, they also1 obey BA = Id, so∑
κ

LλκKκµ = δλµ.

As a consequence ∑
κ

Lλκsκ = mλ.

Let 〈 , 〉 be our standard inner product. Let ( , ) be the inner product where the Schur functions
are orthonomal. Then

〈mλ, sµ〉 =

〈
mλ,

∑
λ′

Lλ′µhλ′

〉
= Lλµ and (mλ, sµ) =

(∑
κ

Lλκsκ, sµ

)
= Lλµ

By linearity, we have 〈f, g〉 = (f, g) for all f, g ∈ Λ. �

1It often happens in combinatorics that AB = Id has a simple combinatorial proof and BA = Id does not.
Loehr and Mendes, Bijective matrix algebra, Linear Algebra Appl. 416 (2006), no. 2-3, 917–944 give an algo-
rithm which, given as input a sign canceling involution proving AB = Id, produces as output a sign canceling
involution proving BA = Id. Loehr and Mendes motivating example was to find a combinatorial interpreta-
tion of

∑
κ LλκKκµ = δλµ. To my knowledge, no simpler interpretation is known. See also the discussion at

http://sbseminar.wordpress.com/2010/07/26/a-proof-length-challenge/
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3. Concluding remarks

This paragraph added by David. I can’t remember whether I made this argument on Sept 21 or
Sept 14, but it should be recorded somewhere. Let L be the part of Λ in degree n for some fixed
n, so L ∼= ZN as an abelian group. Suppose that we have some other orthonormal basis tλ for L.
Then tλ is some permutation of ±sλ. Proof: Write tλ =

∑
cλµsµ. Then 〈tλ, tλ〉 =

∑
µ c

2
λµ = 1,

indicating that precisely one of the cλµ is ±1 and all others are zero. So tλ = λsλ′ for some λ′.
Moreover, if λ 6= µ, then 〈tλ, tµ〉 = 0, so λ′ 6= µ′ and we see that λ 7→ λ′ is a permutation.

Something David should have mentioned but didn’t. Suppose that we have a sequence of homoge-
nous symmetric polynomials ti with integer coefficients, obeying

∏
(1 − xiyj)

−1 =
∑
ti(x)ti(y).

Then the same proof shows ti contains ±sλ once for each λ, plus possibly some copies of the zero
polynomial. We don’t need to check first that ti is a basis for Λ.

On problem set 1, problem 5, we show that ω preserves the inner product on Λ. So ω(sλ) = ±sλ′
for some λ′. On problem set 3, problem 3, we will show that ω(sλ) = sTλ . Sketch of proof: The
Jacobi-Trudi identity gives sλ as a determinant in the h’s, so we can express ω(sλ) as a determinant
in the e’s. Problem 3 evaluates that determinant and shows that it is sλT .

3.1. A remark just for the fun of it. Suppose we have L ∼= ZN , with inner product L×L→ Z
which is symmetric, positive definite, and has dual bases ei and fi both in L. We might expect
that this would force a self-dual basis in L, but this is not the case.

For a counterexample, consider the matrix

2 −1 0 0 0 0 0 0
−1 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
0 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 −1
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 0
0 0 0 0 −1 0 0 2


corresponding to the graph

• • • • • • •

•
The matrix is symmetric, positive definite, and has determinant 1. But if 〈 , 〉 is the inner

product corresponding to this matrix, then for any v = (v1, . . . , v8) we have

〈v, v〉 = 2
∑

v2i − 2
∑

(i,j) in graph

vivj

and is hence even for all v (so in particular cannot be equal to 1).


