NOTES FOR SEPTEMBER 26, 2012: SKEW SCHUR FUNCTIONS

AARON PRIBADI

Let λ, μ be partitions such that $\lambda \supset \mu$, that is $\lambda_i \geq \mu_i$ for all i. The **skew Young diagram** λ/μ is the set difference between the two partitions.

Example 1. Let $\lambda = 6322$ and $\mu = 411$.

Then λ/μ is a skew Young diagram.

A (skew) semi-standard Young tableau (SSYT) of shape λ/μ is a filling of the Young diagram λ/μ with positive integers such that the rows are weakly increasing and the columns are strictly increasing.

Example 2. A semi-standard Young tableau of shape λ/μ .

$$\begin{array}{c|c}
 & 2 & 3 \\
\hline
 & 3 \\
\hline
 & 6 & 6 \\
\end{array}$$

The **skew Schur function** $s_{\lambda/\mu}$ is defined

$$s_{\lambda/\mu} = \sum_{\substack{\text{SSYT } T \\ \text{shape}(T) = \lambda/\mu}} x^T.$$

Proposition 1. Skew Schur functions are symmetric.

Proof. Same as that for Schur functions (via the Bender-Knuth involution).

We now examine skew Schur functions with respect to various bases of $\Lambda.$

$$s_{\lambda/\mu} = \sum_{\nu} K_{\lambda/\mu,\nu} m_{\nu}$$

where the coefficient $K_{\lambda/\mu,\nu}$ is the (skew) Kostka number. It equals the number of SSYT of shape λ/μ and content ν .

Since ordinary Schur's already span Λ , the skew Schur's are linear combinations of these. The coefficients of this linear combination, as will be discussed below, are called Littlewood-Richardson numbers.

For the homogeneous basis, we have an analogue of the Jacobi-Trudi identity.

Proposition 2 (Jacobi-Trudi).

$$s_{\lambda/\mu} = \det(h_{\lambda_i - \mu_j - i + j})$$

Proof. Same as that for Schur functions (non-intersecting lattice paths).

Example 3.

$$s_{32/1} = \begin{array}{|c|c|c|c|c|} \hline & & & & \\ s_{32/1} = \begin{vmatrix} h_2 & h_4 \\ h_0 & h_2 \end{vmatrix} = h_{22} - h_4$$

Also, we have $\omega(s_{\lambda/\mu}) = s_{\lambda^T/\mu^T}$ and dual Jacobi-Trudi.

Any product of skew Schur functions is also a skew Schur function, as we can put two skew shapes together (disconnected-ly) to make a new skew shape for the product. In particular, any complete homogeneous polynomial h_{λ} is a skew Schur function. This is because $h_k = s_{(k)}$, where (k) is a row of k boxes. Then (for example) $h_{422} = s_{(4)}s_{(2)}s_{(2)}$ is the skew Schur function for the shape

which has disconnected rows of length $\lambda_1, \ldots, \lambda_{\ell(\lambda)}$.

There is also a relation between skew Schur and non-skew Schur functions.

Proposition 3. The "skew by μ " operator that sends $s_{\lambda} \mapsto s_{\lambda/\mu}$ is adjoint to multiplication by s_{μ} . In other words, for any $f \in \Lambda$

$$\langle s_{\lambda/\mu}, f \rangle = \langle s_{\lambda}, f s_{\mu} \rangle$$
.

In particular, for a Schur function s_{ν}

$$\langle s_{\lambda/\mu}, s_{\nu} \rangle = \langle s_{\lambda}, s_{\mu} s_{\nu} \rangle$$
.

Then the decomposition of $s_{\lambda/\mu}$ into a sum of non-skew Schur functions s_{ν} has structure constants that are the constants that you get from multiplying non-skew Schur functions.

Example 4. For the skew shape 321/21

we can compute $s_{321/21}$. Because $s_{321/21}$ is the product of the skew Schurs of its disconnected components

$$s_{321/21} = (s_1)^3 = (s_2 + s_{11})s_1 = (s_3 + s_{21}) + (s_{21} + s_{111}) = s_3 + 2s_{21} + s_{111}.$$

We can check that the coefficient of s_3 in $s_{321/21}$ (expanded in the s-basis) is

$$\langle s_{321/21}, s_3 \rangle = \langle s_{321}, s_3 s_{21} \rangle = 1$$

because

$$s_3 s_{21} = s_{321} + s_{411} + s_{42} + s_{51}$$

which has s_{321} with coefficient 1.

Recall the Pieri rule, which we use for some computations in the above. A horizontal k-strip is a skew shape with k boxes and no more than one box in each column. The Pieri rule is

$$s_{\mu}h_{k} = \sum_{\lambda} s_{\lambda}$$

where the sum ranges over all partitions λ such that λ/μ is a horizontal k-strip.

Proof. (of Proposition 3, adjointness) It suffices to prove this for the f from some basis for Λ , so we will show it for $f = h_{\nu}$. We wish to show that $\langle s_{\lambda/\mu}, h_{\nu} \rangle = \langle s_{\lambda}, s_{\mu}h_{\nu} \rangle$.

On the LHS, we have

$$\langle s_{\lambda/\mu}, h_{\nu} \rangle$$
 = coefficient of m_{ν} if $s_{\lambda/\mu}$ is written in the *m*-basis = $K_{\lambda/\mu,\nu}$ (that is, the number of SSYT of shape λ/μ , content ν).

On the RHS

$$\langle s_{\lambda}, s_{\mu} h_{\nu} \rangle = \text{coefficient of } s_{\lambda} \text{ in } s_{\mu} h_{\nu}.$$

Use the Pieri rule to turn $s_{\mu}h_{\nu}$ into a sum.

$$\begin{split} s_{\mu}h_{\nu} &= s_{\mu}h_{\nu_{1}}h_{\nu_{2}}\cdots h_{\nu_{k}} \\ &= \sum_{\rho^{(1)}} s_{\rho^{(1)}}h_{\nu_{2}}h_{\nu_{3}}\cdots h_{\nu_{k}} \\ &= \sum_{\rho^{(1)},\rho^{(2)}} s_{\rho^{(2)}}h_{\nu_{3}}\cdots h_{\nu_{k}} \\ &= \sum_{\rho^{(1)},\rho^{(2)}} s_{\rho^{(2)}}h_{\nu_{3}}\cdots h_{\nu_{k}} \\ &= \sum_{\rho^{(1)},\rho^{(2)},\dots,\rho^{(k)}} s_{\rho^{(k)}} \\ &= \sum_{\rho^{(1)},\rho^{(2)},\dots,\rho^{(k)}} s_{\rho^{(k)}} \\ &= \sum_{\rho^{(1)},\rho^{(2)},\dots,\rho^{(k)}} s_{\rho^{(k)}} \\ &= \sum_{\rho^{(k)},\rho^{(k)},\dots,\rho^{(k)}} s_{\rho^{(k)},\dots,\rho^{(k)}} s_{\rho^{(k)},$$

Each term $s_{\rho^{(k)}}$ in the sum represents a SSYT with shape $\rho^{(k)}/\mu$ and content ν ; in the SSYT, each cell of the *i*th horizontal strip contains *i*. That is,

$$s_{\mu}h_{\nu} = \sum_{\substack{\text{SSYT } T \\ \text{shape}(T) = \rho/\mu \\ \text{content}(T) = \nu}} s_{\rho}.$$

The coefficient of s_{λ} in $s_{\mu}h_{\nu}$ is the number of SSYT with shape λ/μ and content ν , i.e. $K_{\lambda/\mu,\nu}$, and

$$\langle s_{\lambda/\mu}, h_{\nu} \rangle = \langle s_{\lambda}, s_{\mu} h_{\nu} \rangle$$

as desired. \Box

Example 5. If $\mu = (k)$, then

$$\langle s_{\lambda/(k)}, s_{\nu} \rangle = \langle s_{\lambda}, s_{\nu} s_{(k)} \rangle = \begin{cases} 1 & \text{if } \lambda/\nu \text{ is a horizontal } k\text{-strip} \\ 0 & \text{otherwise} \end{cases}$$

and

$$s_{\lambda/(k)} = \sum_{\lambda/\nu \text{ is a horizontal } k\text{-strip}} s_{\nu}.$$

With some actual numbers,

The coefficients $\langle s_{\lambda/\mu}, s_{\nu} \rangle = \langle s_{\lambda}, s_{\mu}s_{\nu} \rangle = c_{\mu\nu}^{\lambda}$ are called **Littlewood-Richardson coefficients**. One can also define $s_{\lambda/\mu}$ with the following relation.

$$s_{\lambda}(x,y) = \sum_{\mu \subset \lambda} s_{\mu}(x) s_{\lambda/\mu}(y)$$

This is basically the same as the definition by summing over skew SSYT. Take a SSYT of shape λ and consider the positions of the entries indexing x variables. These form some SSYT of some shape μ ; the remaining y-variables form an SSYT of shape λ/μ .

We reprove the adjoitness relation from this perspective.

Proof.

$$\prod_{i,j} (1 - x_i z_j)^{-1} \times \prod_{i,j} (1 - y_i z_j)^{-1} = \sum_{\lambda} s_{\lambda}(x, y) s_{\lambda}(z)$$

$$= \sum_{\lambda, \mu} s_{\mu}(x) s_{\lambda/\mu}(y) s_{\lambda}(z)$$

$$= \sum_{\lambda, \mu, \nu} s_{\mu}(x) s_{\nu}(y) s_{\lambda}(z) \langle s_{\lambda/\mu}, s_{\nu} \rangle$$

and

$$\prod_{i,j} (1 - x_i z_j)^{-1} \times \prod_{i,j} (1 - y_i z_j)^{-1} = \left(\sum_{\mu} s_{\mu}(x) s_{\mu}(z) \right) \left(\sum_{\nu} s_{\nu}(y) s_{\nu}(z) \right)
= \sum_{\mu,\nu} s_{\mu}(x) s_{\nu}(y) s_{\mu}(z) s_{\nu}(z)
= \sum_{\lambda,\mu,\nu} s_{\mu}(x) s_{\nu}(y) s_{\lambda}(z) \langle s_{\lambda}, s_{\mu} s_{\nu} \rangle$$

so
$$\langle s_{\lambda/\mu}, s_{\nu} \rangle = \langle s_{\lambda}, s_{\mu} s_{\nu} \rangle$$
.