
NOTES FOR SEPTEMBER 26, 2012: SKEW SCHUR FUNCTIONS

AARON PRIBADI

Let λ, µ be partitions such that λ ⊃ µ, that is λi ≥ µi for all i. The skew Young diagram λ/µ
is the set difference between the two partitions.

Example 1. Let λ = 6322 and µ = 411.

λ = µ =

Then λ/µ is a skew Young diagram.

λ/µ =

A (skew) semi-standard Young tableau (SSYT) of shape λ/µ is a filling of the Young
diagram λ/µ with positive integers such that the rows are weakly increasing and the columns are
strictly increasing.

Example 2. A semi-standard Young tableau of shape λ/µ.

2 3
1 5
3

6 6

The skew Schur function sλ/µ is defined

sλ/µ =
∑

SSYTT
shape(T )=λ/µ

xT .

Proposition 1. Skew Schur functions are symmetric.

Proof. Same as that for Schur functions (via the Bender-Knuth involution). �

We now examine skew Schur functions with respect to various bases of Λ.
In the monomial basis, the skew Schur function is

sλ/µ =
∑
ν

Kλ/µ,νmν

where the coefficient Kλ/µ,ν is the (skew) Kostka number . It equals the number of SSYT of
shape λ/µ and content ν.

Since ordinary Schur’s already span Λ, the skew Schur’s are linear combinations of these. The
coefficients of this linear combination, as will be discussed below, are called Littlewood-Richardson
numbers.

For the homogeneous basis, we have an analogue of the Jacobi-Trudi identity.

Proposition 2 (Jacobi-Trudi).
sλ/µ = det(hλi−µj−i+j)

Proof. Same as that for Schur functions (non-intersecting lattice paths). �
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Example 3.

s32/1 = s32/1 =

∣∣∣∣h2 h4
h0 h2

∣∣∣∣ = h22 − h4

Also, we have ω(sλ/µ) = sλT /µT and dual Jacobi-Trudi.
Any product of skew Schur functions is also a skew Schur function, as we can put two skew

shapes together (disconnected-ly) to make a new skew shape for the product. In particular, any
complete homogeneous polynomial hλ is a skew Schur function. This is because hk = s(k), where
(k) is a row of k boxes. Then (for example) h422 = s(4)s(2)s(2) is the skew Schur function for the
shape

which has disconnected rows of length λ1, . . . , λ`(λ).
There is also a relation between skew Schur and non-skew Schur functions.

Proposition 3. The “skew by µ” operator that sends sλ 7→ sλ/µ is adjoint to multiplication by sµ.
In other words, for any f ∈ Λ 〈

sλ/µ, f
〉

= 〈sλ, fsµ〉 .

In particular, for a Schur function sν〈
sλ/µ, sν

〉
= 〈sλ, sµsν〉 .

Then the decomposition of sλ/µ into a sum of non-skew Schur functions sν has structure constants
that are the constants that you get from multiplying non-skew Schur functions.

Example 4. For the skew shape 321/21

we can compute s321/21. Because s321/21 is the product of the skew Schurs of its disconnected
components

s321/21 = (s1)
3 = (s2 + s11)s1 = (s3 + s21) + (s21 + s111) = s3 + 2s21 + s111.

We can check that the coefficient of s3 in s321/21 (expanded in the s-basis) is〈
s321/21, s3

〉
= 〈s321, s3s21〉 = 1

because

s3s21 = s321 + s411 + s42 + s51

which has s321 with coefficient 1.

Recall the Pieri rule, which we use for some computations in the above. A horizontal k-strip is
a skew shape with k boxes and no more than one box in each column. The Pieri rule is

sµhk =
∑
λ

sλ

where the sum ranges over all partitions λ such that λ/µ is a horizontal k-strip.

Proof. (of Proposition 3, adjointness) It suffices to prove this for the f from some basis for Λ, so
we will show it for f = hν . We wish to show that

〈
sλ/µ, hν

〉
= 〈sλ, sµhν〉.

On the LHS, we have〈
sλ/µ, hν

〉
= coefficient of mν if sλ/µ is written in the m-basis

= Kλ/µ,ν (that is, the number of SSYT of shape λ/µ, content ν).



NOTES FOR SEPTEMBER 26, 2012: SKEW SCHUR FUNCTIONS 3

On the RHS

〈sλ, sµhν〉 = coefficient of sλ in sµhν .

Use the Pieri rule to turn sµhν into a sum.

sµhν = sµhν1hν2 · · ·hνk
=
∑
ρ(1)

sρ(1)hν2hν3 · · ·hνk
{
ρ(1) s.t. ρ(1)/µ is a horizontal ν1-strip

=
∑

ρ(1),ρ(2)

sρ(2)hν3 · · ·hνk

{
ρ(1) s.t. ρ(1)/µ is a horizontal ν1-strip

ρ(2) s.t. ρ(2)/ρ(1) is a horizontal ν2-strip

=
∑

ρ(1),ρ(2),...,ρ(k)

sρ(k)


ρ(1) s.t. ρ(1)/µ is a horizontal ν1-strip

...

ρ(k) s.t. ρ(k)/ρ(k−1) is a horizontal νk-strip

Each term sρ(k) in the sum represents a SSYT with shape ρ(k)/µ and content ν; in the SSYT, each
cell of the ith horizontal strip contains i. That is,

sµhν =
∑

SSYTT
shape(T )=ρ/µ
content(T )=ν

sρ.

The coefficient of sλ in sµhν is the number of SSYT with shape λ/µ and content ν, i.e. Kλ/µ,ν , and〈
sλ/µ, hν

〉
= 〈sλ, sµhν〉

as desired. �

Example 5. If µ = (k), then

〈
sλ/(k), sν

〉
=
〈
sλ, sνs(k)

〉
=

{
1 if λ/ν is a horizontal k-strip

0 otherwise

and

sλ/(k) =
∑

λ/ν is a horizontal k-strip

sν .

With some actual numbers,

53/2 = s53/2 = s33 + s42 + s51.

The coefficients
〈
sλ/µ, sν

〉
= 〈sλ, sµsν〉 = cλµν are called Littlewood-Richardson coefficients.

One can also define sλ/µ with the following relation.

sλ(x, y) =
∑
µ⊂λ

sµ(x)sλ/µ(y)

This is basically the same as the definition by summing over skew SSYT. Take a SSYT of shape
λ and consider the positions of the entries indexing x variables. These form some SSYT of some
shape µ; the remaining y-variables form an SSYT of shape λ/µ.

We reprove the adjontness relation from this perspective.
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Proof. ∏
i,j

(1− xizj)−1 ×
∏
i,j

(1− yizj)−1 =
∑
λ

sλ(x, y)sλ(z)

=
∑
λ,µ

sµ(x)sλ/µ(y)sλ(z)

=
∑
λ,µ,ν

sµ(x)sν(y)sλ(z)
〈
sλ/µ, sν

〉
and ∏

i,j

(1− xizj)−1 ×
∏
i,j

(1− yizj)−1 =

(∑
µ

sµ(x)sµ(z)

)(∑
ν

sν(y)sν(z)

)
=
∑
µ,ν

sµ(x)sν(y)sµ(z)sν(z)

=
∑
λ,µ,ν

sµ(x)sν(y)sλ(z) 〈sλ, sµsν〉

so
〈
sλ/µ, sν

〉
= 〈sλ, sµsν〉. �


