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We will be studying the representation theory of GLn(C). This is a big topic, and we will only
study a little of it. In particular, we will be looking at the connections to combinatorics. Classically,
this means symmetric polynomals and tableaux. We’ll also try to talk about some more modern
perspectives, like crystals, Gelfand-Tsetlin patterns and webs, though probably not all of these.

1. The kind of representations we care about

For any group G, a representation is a vector space V and a map of groups ρ : G→ GL(V ). We
are interested in the case where G is also GLn(C), so we are looking at maps GLn(C)→ GLN (C).

Write U for the standard n-dimensional representation of GLn(C).
Some examples of representations we want to study:

(1) We can take V = U .

(2) We can take V =
∧k U for some k.

(3) We can take V = SymkU for some k.
(4) We can take V = U∨. In coordinates, this is g 7→ g−T .
(5) We can take V = C and ρ(g) = (det g)k for some integer k.

(6) We can take V =
(

Sym2U ⊗ U
)
∩
(
U ⊗

∧2 U
)

, where the intersection is inside U ⊗U ⊗U .

This is an example of a Schur functor.

To understand example (6), recall that, if ρ : G→ GL(V ) and σ : G→ GL(W ) are representa-
tions, then g 7→ ρ(g)⊗ σ(g) gives an action of G on V ⊗W .

Some representations we don’t want to study: The field C has tons of automorphisms, assuming
the axiom of choice. We could compose any of the above examples with one of these automor-
phisms, and get some bizarre representation. We don’t even want to consider the case where the
automorphism is complex conjugation; that is, we don’t want to consider ρ(g) = g. Example (5)
is an example we want. But ρ(g) = | det g| is not something we want to consider, and we certainly
don’t want to consider raising |det g| to non-integer powers.

A representation ρ : GLn(C)→ GLN (C) is a polynomial representation if the entries of the
matrix ρ(g) are polynomials in the entries of g. Of the above examples, (1), (2), (3) and (6) are
polynomial. (5) is polynomial if k ≥ 0, but not for k < 0. (4) is not polynomial, because g−1 is
computed by taking the adjugate matrix and diving by det g, so there will be powers of det g in the
denominator. Motivated by these examples, we come up with the slightly more general definition:
A representation ρ is a rational representation if the entries of ρ(g) are rational functions of the
entries of g, whose denominators are powers of det g. We will be studying polynomial and rational
representations.

Why rational representations? From the perspective of algebraic geometry, these are the repre-
sentations where the map ρ : GLn(C)→ GLN (C) is an algebraic map. Recall that the coordinate
ring of GLn(C) is generated by the matrix entries and (det g)−1. So ρ is a rational map if it is
given by functions in the coordinate ring.

Another reason is that, if we instead ask the map ρ to be given by holomorphic functions, we
get the exact same set of representations. So we wind up studying the same set of representations
with fewer analytic prerequisites by looking at rational representations.

A third reason is that, if we want to think about representations of GLn(k) for some other field
k, polynomiality and rationality are the only reasonable niceness conditions we have available to
us.
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2. The relation between representations and symmetric polynomials

If ρ : G→ GL(V ) is an finite dimensional representation, then the character χ of ρ is defined by
χ(g) = Tr(ρ(g)). Note that

χ(hgh−1) = Tr(ρ(hgh−1)) = Tr(ρ(h)ρ(g)ρ(h)−1) = Tr(ρ(h)−1ρ(h)ρ(g)) = Tr(ρ(g)) = χ(g)

so χ is constant on conjugacy classes. Now, the diagonalizable matrices are dense in GLn(C), so
any continuous function on GLn(C) is determined by its values on diagonalizable matrices. And
“diagonalizable” just means “conjugate to diagonal”. So characters of continuous representations
are determined by their values on diagonal matrices.

If ρ is polynomial, then χ

( x1
. . .

xn

)
is a polynomial in x1, x2, . . . , xn. If ρ is rational, then it

is a Laurent polynomial.
Moreover, note that 1

1
1

x y
z

 1
1

1

−1 =

y z
x


and, more generally, conjugating a diagonal matrix by a permutation matrix permutes its entries.

So χ

( x1
. . .

xn

)
is a symmetric (Laurent) polynomial in x1, x2, . . . , xn. In this way, we get a

symmetric (Laurent) polynomial from each polynomial (rational) respresentation.
We introduce the notation Λn for the ring of symmetric polynomials in x1, x2, . . . , xn, with

integer coefficients. We’ll write Λ±n for symmetric Laurent polynomials. Soon we will also introduce
Λ and Λ±, which conceptually are the limits of Λn and Λ±n as n→∞.

3. The main relations between representations and symmetric polynomials

The following are our main results for the first month and a half.

• A (polynomial or rational) representation is determined up to isomorphism by its character.
• A representation of GLn is a direct sum of simple representations; here “simple” means

“having no nontrivial subreps”. There is a classical basis sλ of Λ called the Schur poly-
nomials, corresponding to the simple reps.
• There is an inner product 〈 , 〉 on Λ, called the Hall inner product, such that

〈χV , χV 〉 = dim HomGLn(C)(V,W ).

• Restriction fromGLn(C) to U(n) gives an isomorphism of categories from {RationalGLn(C)
reps} to {Smooth (or continuous, or real analytic, or measurable . . . ) U(n) reps}.

4. Course outline

In rough outline, the plan is the following:

Sept Lightning introduction to symmetric polynomials.
Oct Connections between symmetric polynomials and representation theory.

Early Nov Classical tableaux theory: RSK, jdt, Littlewood-Richardson, etc.
Late Nov-Dec More modern tools: Some subset of crystals, webs, Gelfand-Tsetlin bases, honeycombs.

See the course website: http://www.math.lsa.umich.edu/∼speyer/665.html for course poli-
cies and beauracracy.

5. Basics of partitions and symmetric polynomials

For λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, we define the element mλ ∈ Λn as demonstrated by the following
examples:

m321(x, y, z) = x3y2z + x3yz2 + x2y3z + x2yz3 + xy3z2 + xy2z3 in Λ3.

m1100(w, x, y, z) = wx+ wy + wz + xy + xz + yz in Λ4.
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Note that we do NOT write wx twice, even though there are two ways to write the variables
(w, x, y, z) under the exponents (1, 1, 0, 0) to get the monomial wx. We frequently omit zeroes, so
m11 = m1100.

The mλ form a basis for Λn, as λ ranges through n-tuples λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. To get a
basis for Λ±, just omit the condition that the λi be ≥ 0.

A partition is a sequence of nonnegative integers λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. We treat trailing
zeroes as negligible, so (4, 2, 1), (4, 2, 1, 0), (4, 2, 1, 0, 0), . . . are the same partition.

We often represent a partition by a young diagram . For example

is (4, 2, 1).

We define majorization order by λ � µ if

λ1 ≤ µ1
λ1 + λ2 ≤ µ1 + µ2

λ1 + λ2 + λ3 ≤ µ1 + µ2 + µ3
and so forth.

We define transpose of partitions by example:

T

= so (4, 2, 1)T = (3, 2, 1, 1).


