
NOTES FOR SEPTEMBER 7

KEVIN CARDE

1. Terminology from Last Time

Recall from last time the ring of symmetric polynomials Λn = Z[x1, . . . , xn]Sn and the ring of
symmetric Laurent polynomials Λ±

n = Z[x±1 , . . . , x
±
n ]Sn .

A partition is a finite sequence λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 of weakly decreasing nonnegative
integers (with trailing zeroes usually ignored). We draw partitions as Young diagrams such that
the partition (4, 2, 1) is represented as

(this is the English way to draw partitions—there are other conventions).
The size of a partition is the sum of its parts: |λ| = λ1 + λ2 + · · · + λn, so |(4, 2, 1)| = 7. The

length of a partition is the number of nonzero rows, so `(4, 2, 1) = 3.
There is a basis of Λn indexed by partitions λ with `(λ) ≤ n called the monomial basis. For

example,

m111(x1, x2, x3, x4) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4.

In general, mλ is the sum of all ways to use the parts of the partitions as exponents on the variables.
The degree of mλ is |λ|, and the dimension of the degree d part of Λn is the number of partitions
of size d with at most n rows.

Recall also majorization order : λ � µ if

λ1 ≤ µ1
λ1 + λ2 ≤ µ1 + µ2

...

λ1 + λ2 + · · ·+ λn ≤ µ1 + µ2 + · · ·+ µn.

2. Elementary Symmetric Polynomials

Define ek = m11...1, where the subscript on m consists of k 1s. For example, e0 = m0 = 1 and
e3(w, x, y, z) = wxy + wxz + wyz + xyz. Then set

eλ = eλ1eλ2 · · · eλn
so that e.g.

e31(w, x, y, z) = e3(w, x, y, z)e1(w, x, y, z)

= (wxy + wxz + wyz + xyz)(w + x+ y + z)

= (w2xy + . . . ) + 4wxyz

= m211 + 4m1111.

These are called the elementary symmetric polynomials.

Lemma 1. eλ = mλT + (linear combination of mµ for µ � λT ).

(Short rant: If we denoted by “eλ” what’s standardly called “eλT ”, there would be a lot fewer
transposes in the theory! Unfortunately, this way is totally standard.)
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Proof. Notice that the largest exponent of x1 in eλ is at most `(λ) = (λT )1. Notice that the largest
sum of the exponents on x1 and x2 is at most the number of parts of λ plus the number of parts
of λ bigger than 1, or (λT )1 + (λT )2. In general,

r∑
k=1

(exponent of xk) ≤ (λT )1 + (λT )2 + · · ·+ (λT )r.

Therefore, if mµ shows up when expanding eλ in the monomial basis, then µ � λT . �

Corollary 2. The eλ with `(λT ) ≤ n are a basis for Λn.

Proof. Fix a degree d; we will show that the appropriate eλ form a basis of the degree d part of
Λn. Let X = {eλ : `(λT ) ≤ n, |λ| = d} and let Y = {mλ : `(λ) ≤ n, |λ| = d}. We have seen that Y
is a basis of the degree d part of Λn; our goal now is to show that X is also such a basis.

Clearly |X| = |Y |, so there are the correct number of eλ to be a basis. Therefore, since the
degree d part of Λn is finite dimensional, it suffices to show that we can express all the mµ ∈ Y in
terms of the eλ ∈ X.

Extend the majorization order to a total order (for example, take the lexicographic order). Order
the elementary symmetric polynomials in X so that eλ comes before eµ whenever λT ≤ µT in this
total order, and order the monomial symmetric polynomials in Y so that mλ comes before mµ

whenever λ ≤ µ. Let E be the (column) vector of elementary symmetric polynomials from X
in this order from largest to smallest, and let M be the (column) vector of monomial symmetric
polynomials from largest to smallest.

Let aλµ be the coefficient of mµ in eλT . Let A = (aλµ) be the matrix of these aλµ (with rows
and columns from largest to smallest in our total order on partitions). Hence the matrix A takes
the vector M to the vector E: AM = E.

Notice now that this matrix is upper triangular, as the previous lemma tells us that aλµ is 0
unless µ � λ, and further, this matrix has 1s on the diagonal (since aλλ = 1). Hence this matrix
is invertible (and the inverse is once again an upper triangular matrix with 1s on the diagonal).
Therefore, we have M = A−1E, which, when expanded out, shows that we can successfully write
all the mµ ∈ Y in terms of the eλ ∈ X, as desired. �

Example 3. This kind of argument is important, but in this case it’s unfortunately complicated
by the pesky transpose issues. To (hopefully) make this clearer, let’s work through the proof for
n = 3 and d = 4.

There are 5 partitions of 4, all but one of which have at most 3 parts. Hence our set Y consists
of {m4,m31,m22,m211}, which we already know to be a basis of the degree 4 part of Λ3. Our set
X consists of all partitions of 4 whose transpose has at most 3 parts; equivalently, all partitions of
4 with largest part at most 3. So we have X = {e1111, e211, e22, e31}.

The majorization order on partitions of 4 is already a total order, with (4) � (3, 1) � (2, 2) �
(2, 1, 1) � (1, 1, 1, 1), and our sets Y and X as written above are already ordered appropriately
(recall that X is ordered according to the majorization order of the transposes, which is equivalent
(homework!) to reverse majorization). In accordance with the lemma, we have

e1111 = (x+ y + z)4 = m4 + 4m31 + 6m22 + 12m211

e211 = (yz + xz + xy)(x+ y + z)2 = m31 + 2m22 + 5m211

e22 = (yz + xz + xy)2 = m22 + 2m211

e31 = xyz(x+ y + z) = m211

and so our matrix equation is 
1 4 6 12
0 1 2 5
0 0 1 2
0 0 0 1



m4

m31

m22

m211

 =


e1111
e211
e22
e31

 .

This matrix is upper triangular with ones on the diagonal, as promised, and inverting it allows us
to write the monomial symmetric polynomials in terms of the elementary symmetric polynomials.
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As a corollary, we get what is sometimes called the Fundamental Theorem of Symmetric Poly-
nomials:

Corollary 4. Λn = Z[e1, e2, . . . , en].

Proof. Monomials in e1, . . . , en are exactly the eλ with all parts of λ less than n, or the eλ with
`(λT ) ≤ n. �

If `(λ) ≤ n, then the expression for mλ as a polynomial in the ek does not depend on n. We
have ring maps

Λn → Λn−1

xn 7→ 0

xk 7→ xk, for k < n

or in terms of the ek,

en 7→ 0

ek 7→ ek, for k < n.

Therefore, if we set Λ = Z[e1, e2, . . . , en, . . . ], we can talk about mλ ∈ Λ as the polynomial in the
ek which works in Λn for all n (taking ek = 0 whenever k > n). For example, we can talk about
x21 + x22 + x23 + . . . in any number of variables as e21 − 2e2.

Another way to define this is to notice that the coefficients for multiplying the mλ don’t depend
on n:

mλmµ =
∑

aνλµmν

where the aνλµ don’t depend on n as soon as n is large enough to have mν in the first place, and

the number of terms on the right hand side is at most the number of partitions of size |λ| + |µ|.
Hence we can say Λ has basis mλ (for all partitions λ) with multiplication constants aνλµ.

This approach allows us to define Λ± analogously. Λ±
n has basis mλ with λ1 ≥ λ2 ≥ · · · ≥ λn,

where now the λk may be less than zero. We see the same coefficients when multiplying together
the mλ regardless of n, and again we can define Λ± to use these multiplication constants.

However, Λ± does not have a presentation as nice as Λ = Z[e1, e2, . . . ]. For finite n, however, we
can write Λ±

n = Z[e1, e2, . . . , en−1, e
±
n ]. We will be working in Λ all the time because it’s convenient,

but it’s worth being aware of these issues with Λ±.


