A LEMMA ABOUT THE JACOBIAN DETERMINANT

The point of this note is to prove the following lemma: Let k& be a field of characteristic

zero. Let fi1, fo, ..., fu € k[x1,...,2,]. Then fi, ..., f, are algebraically dependent if and
only if
det [afl] =0.
ax]’

This proof is taken from Humphreys Reflection Groups and Cozeter Groups Chapter 3.10.
I would be interested in seeing better motivated, similarly elementary proofs.

We put J = [%]

From a geometric perspective taking k = R, (x1,...,2,) — (fi(x),..., fo(x)) gives a map
F : R* — R". The condition that det J = 0 means that DF' is everywhere singular so, by
Sard’s Theorem, F(R™) has measure 0. This perhaps makes it plausible that F'(R") lies in
some algebraic hypersurface.

The result is false in characteristic p; take n = 1 and f; = 2 for a counterexample.

Proof. First, suppose that fi, ..., f, are algebraically dependent. Then H(f1,...,f,) =0
for some nonzero polynomial H(y1,...,y,). Choose such H of minimal degree. Since we are
in characteristic 0, at least one derivative 0H /dy; is nonzero and, since we chose H minimal,

gi(f17~--7fn) is nonzero. Put h; = g—i(f1,~--,fn) and h = [hq hg -+ hy,]. Then the chain

rule says that hJ is the vector of derivatives dH (f1, ..., fn)/0z;, which is 0. So & is in the
left kernel of Ker(J) and det J = 0.

Now, suppose that fi, ..., f, are algebraically independent. Any n + 1 polynomials in n
variables are algebraically dependent so, for each x;, there is a polynomial relation

gk(fl""afnuxj =0

for some polynomial gx(y1,- .., ¥Yn, 2). We choose g; of minimal z degree and, since fi, ...,
fn are algebraically independent, this minimal degree is not 0. The chain rule gives

T 9gx 0yj . 99k
P 6yj ) 8x, 0z (y

=0. (%)

(yl 7777 yn,Z):(fl ----- fn’zk

equation () as
JK = —diag(qi, g2, .- q) (1)

Since g has positive z-degree, and we are in characteristic 0, we know % # 0. By the
minimality of gy, it stays nonzero when we plug in (fi,..., fo, k). So gx # 0. So the right
hand side of (1) has determinant (—1) [] gx # 0. This shows that det J # 0.

O



