A LEMMA ABOUT THE JACOBIAN DETERMINANT

The point of this note is to prove the following lemma: Let k be a field of characteristic zero. Let $f_1, f_2, \ldots, f_n \in k[x_1, \ldots, x_n]$. Then f_1, \ldots, f_n are algebraically dependent if and only if

$$
\det \left[\frac{\partial f_i}{\partial x_j} \right] = 0.
$$

This proof is taken from Humphreys Reflection Groups and Coxeter Groups Chapter 3.10. I would be interested in seeing better motivated, similarly elementary proofs.

We put $J = \left[\frac{\partial f_i}{\partial x_j}\right]$.

From a geometric perspective taking $k = \mathbb{R}$, $(x_1, \ldots, x_n) \mapsto (f_1(x), \ldots, f_n(x))$ gives a map $F: \mathbb{R}^n \to \mathbb{R}^n$. The condition that $\det J = 0$ means that DF is everywhere singular so, by Sard's Theorem, $F(\mathbb{R}^n)$ has measure 0. This perhaps makes it plausible that $F(\mathbb{R}^n)$ lies in some algebraic hypersurface.

The result is false in characteristic p; take $n = 1$ and $f_1 = x_1^p$ $_1^p$ for a counterexample.

Proof. First, suppose that f_1, \ldots, f_n are algebraically dependent. Then $H(f_1, \ldots, f_n) = 0$ for some nonzero polynomial $H(y_1, \ldots, y_n)$. Choose such H of minimal degree. Since we are in characteristic 0, at least one derivative $\partial H/\partial y_i$ is nonzero and, since we chose H minimal, ∂H $\frac{\partial H}{\partial y_i}(f_1,\ldots,f_n)$ is nonzero. Put $h_i=\frac{\partial H}{\partial y_i}$ $\frac{\partial H}{\partial y_i}(f_1,\ldots,f_n)$ and $\vec{h}=[h_1\;h_2\;\cdots\;h_n]$. Then the chain rule says that $\vec{h}J$ is the vector of derivatives $\partial H(f_1,\ldots,f_n)/\partial x_i$, which is 0. So \vec{h} is in the left kernel of $\text{Ker}(J)$ and det $J=0$.

Now, suppose that f_1, \ldots, f_n are algebraically independent. Any $n + 1$ polynomials in n variables are algebraically dependent so, for each x_k , there is a polynomial relation

$$
g_k(f_1,\ldots,f_n,x_jk=0
$$

for some polynomial $g_k(y_1, \ldots, y_n, z)$. We choose g_k of minimal z degree and, since $f_1, \ldots,$ f_n are algebraically independent, this minimal degree is not 0. The chain rule gives

$$
\sum_{j} \left. \frac{\partial g_k}{\partial y_j} \right|_{(y_1, \dots, y_n, z) = (f_1, \dots, f_n, x_k)} \left. \frac{\partial y_j}{\partial x_i} + \left. \frac{\partial g_k}{\partial z} \right|_{(y_1, \dots, y_n, z) = (f_1, \dots, f_n, x_k)} = 0. \tag{*}
$$

Put $K = \left[\frac{\partial g_k}{\partial y_j}\right|_{(y_1,\ldots,y_n,z)=(f_1,\ldots,f_n,x_k)}$. Put $q_k = \frac{\partial g_k}{\partial z}\Big|_{(y_1,\ldots,y_n,z)=(f_1,\ldots,f_n,x_k)}$. So we can rewrite equation (∗) as

$$
JK = -\text{diag}(q_1, q_2, \dots, q_n) \qquad (\dagger).
$$

Since g_k has positive z-degree, and we are in characteristic 0, we know $\frac{\partial g_k}{\partial z} \neq 0$. By the minimality of g_k , it stays nonzero when we plug in (f_1, \ldots, f_n, x_k) . So $q_k \neq 0$. So the right hand side of (†) has determinant $(-1) \prod q_k \neq 0$. This shows that det $J \neq 0$.

 \Box