Problem Set 1: Due Friday, September 15

You should be able to begin work on all of these problems immediately! See the course website for homework policy.

- 1. (a) The B_n hyperplane arrangement consists of the following list of hyperplanes in \mathbb{R}^n : $x_i \pm x_j = 0$ for $1 \le i < j \le n$ and $x_i = 0$ for $1 \le i \le n$. Show that the complement of these hyperplanes has $2^n n!$ connected components.
 - (b) The D_n hyperplane arrangement is the subset of the B_n arrangement consisting of the hyperplanes $x_i \pm x_j = 0$ for $1 \le i < j \le n$. How many regions does the complement of the D_n arrangement have?
- 2. We recall/preview the following definitions from class: Let Φ be a finite collection of vectors in \mathbb{R}^n , such that $\alpha \in \Phi$ implies $-\alpha \in \Phi$. Let $\rho \in \mathbb{R}^n$ such that $\langle \alpha, \rho \rangle \neq 0$ for any $\alpha \in \Phi$. We define the set of **positive roots**, Φ^+ to be those roots $\alpha \in \Phi$ with $\langle \alpha, \rho \rangle > 0$. We define a positive root to be **simple** if it is not a positive linear combination of other positive roots.

In the following cases (which are known as B_n , D_n and F_4), describe the positive roots and the simple roots. We write e_1, \ldots, e_n for the standard basis of \mathbb{R}^n .

- (a) Φ is all vectors in \mathbb{R}^n of the forms $\pm e_i \pm e_j$ (with $i \neq j$) and $\pm e_i$. Take $\rho = (1, 2, 3, \dots, n)$.
- (b) Φ is all vectors in \mathbb{R}^n of the forms $\pm e_i \pm e_j$ (with $i \neq j$). Take $\rho = (1, 2, 3, \dots, n)$.
- (c) Φ is all vectors in \mathbb{R}^4 of the forms $\pm e_i \pm e_j$ (with $i \neq j$), $\pm e_i$ and $\frac{1}{2}(\pm 1, \pm 1, \pm 1, \pm 1)$. Take $\rho = (1, 2, 4, 8)$.
- 3. Let V be a two dimensional real vector space with basis α_1, α_2 and let α_1^{\vee} and $\alpha_2^{\vee} \in V^{\vee}$ be the vectors such that $\langle \alpha_1^{\vee}, \alpha_1 \rangle = \langle \alpha_2^{\vee}, \alpha_2 \rangle = 2$ and $\langle \alpha_1^{\vee}, \alpha_2 \rangle = \langle \alpha_2^{\vee}, \alpha_1 \rangle = -2$. Let s_i act on V by $s_i(x) = x \langle \alpha_i^{\vee}, x \rangle \alpha_i$ (note that $s_1^2 = s_2^2 = 1$). Let W be the group generated by s_1 and s_2 .
 - (a) Give a simple description of the orbits of α_1 and α_2 under W.
 - (b) Let $D = \{x \in V^{\vee} : \langle x, \alpha_i \rangle \ge 0\}$. Draw and label $D, s_1 D, s_2 D, s_1 s_2 D, s_2 s_1 D$.
 - (c) Give a simple description of $\bigcup_{w \in W} wD$.
 - (d) Now suppose that $\langle \alpha_1^{\vee}, \alpha_2 \rangle = \langle \alpha_2^{\vee}, \alpha_1 \rangle = -3$ instead of -2. Repeat parts (a), (b) and (c) with this change. Hint: Fibonacci numbers should occur.
- 4. This problem introduces the affine symmetric group \tilde{A}_{n-1} , which will be an important example of an infinite Coxeter group.

Fix an integer $n \ge 3$. Define \tilde{S}_n to be the group of bijections $w : \mathbb{Z} \to \mathbb{Z}$ which obey w(i+n) = w(i) + n, made into a group under composition. For $1 \le i \le n$, define the element $s_i \in \tilde{S}_n$ by

$$s_i(x) = \begin{cases} x+1 & x \equiv i \mod n \\ x-1 & x \equiv i+1 \mod n \\ x & \text{otherwise} \end{cases}$$

Define \tilde{A}_{n-1} be $\{w \in \tilde{S}_n : \sum_{i=1}^n w(i) = \sum_{i=1}^n i\}.$

- (a) What is the order of $s_i s_j$?
- (b) Show that \tilde{A}_{n-1} is a subgroup and is generated by the s_i .