Problem Set 10: Due Friday, December 8

See the course website for homework policy. This is the last problem set!

- 1. Let W be a finite Coxeter group and let V, R, S, S_+ and Δ have their usual meanings. Let $A = R/RS_+$ be the coinvariant algebra.
 - (a) We define the **socle** of A to be $\{a \in A : va = 0 \ \forall v \in V\}$. Show that the socle of A is one dimensional, spanned by Δ . (Hint: Let a lie in the socle, and consider $\partial_{\beta}(\beta a)$.)
 - (b) For any integer *i* between 0 and $\ell(w_0)$, multiplication defines a bilinear map $A_i \times A_{\ell(w_0)-i} \to A_{\ell(w_0)} \cong \mathbb{R}$. Show that this is a perfect pairing.
- 2. Let $s_1, s_2, \ldots, s_{n-1}$ be the standard Coxeter generators of S_n . As we will discuss in class, a **Coxeter element** is a permutation c with a reduced word of the form $c = s_{i_1}s_{i_2}\cdots s_{i_{n-1}}$, where $(i_1, i_2, \ldots, i_{n-1})$ is a permutation of $(1, 2, \ldots, n-1)$.
 - (a) Show that c is an n-cycle $(a_1a_2\cdots a_n)$ and describe how to read off $(a_1a_2\cdots a_n)$ from $(i_1, i_2, \ldots, i_{n-1})$.
 - (b) Let $\vec{v} = (v_1, \ldots, v_n) \in \mathbb{C}^n$ be a nonzero $e^{2\pi i/n}$ eigenvector of c. Describe the geometry of the n points $v_1, v_2, \ldots, v_n \in \mathbb{C}$.
 - (c) We focus on the particular case $c = s_1 s_3 s_5 \cdots s_2 s_4 s_6 \cdots$. Let $H \subset \mathbb{R}^n$ be the 2-plane of vectors of the form $(\Re(\alpha v_1), \Re(\alpha v_2), \ldots, \Re(\alpha v_n))$ for $\alpha \in \mathbb{C}$. Describe the intersection of H with the fundamental domain $D = \{(x_1, \ldots, x_n) : x_1 \ge x_2 \ge \cdots \ge x_n\}$.
- 3. Let Γ be a graph with *n* vertices. An *orientation* \mathcal{O} of Γ is an assignment of a direction $i \to j$ to each edge (i, j) of Γ . A *sink* of (Γ, \mathcal{O}) is a vertex *i* where all adjacent edges are directed into *i*, and a *sink* is a vertex where all adjacent vertices are directed out. A *sink-source reversal* takes a sink and reverses all edges incident to it, making a source. Given a cycle $\gamma = (v_1, v_2, \ldots, v_k)$ in Γ and an orientation \mathcal{O} of Γ , the flow of \mathcal{O} along Γ is

$$Flow(\gamma, \mathcal{O}) = \#\{i : v_i \to v_{i+1}\} - \#\{i : v_i \leftarrow v_{i+1}\}$$

where the indices are cyclic modulo k. An orientation \mathcal{O} is called **acyclic** if $-k < \text{Flow}(\gamma, \mathcal{O}) < k$ for every length k cycle γ in Γ .

The aim of this problem is to prove the following result: If \mathcal{O}_1 and \mathcal{O}_2 are two acyclic orientation of Γ , and $\operatorname{Flow}(\gamma, \mathcal{O}_1) = \operatorname{Flow}(\gamma, \mathcal{O}_2)$ for all cycles γ , then we can transform \mathcal{O}_1 to \mathcal{O}_2 by a sequence of sink-source reversals. We write $i \to_1 j$ for the orientation \mathcal{O}_1 and similarly for \mathcal{O}_2 . With all that as prelude, we begin:

- (a) Prove the converse: If O₁ can be transformed into O₂ by a sequence of sink-source reversals, then Flow(γ, O₁) = Flow(γ, O₂) for all cycles γ.
 We may, and do, reduce to the case that Γ is connected.
- (b) Let \mathcal{O}_1 and \mathcal{O}_2 be two acyclic orientation of Γ . Suppose that $\operatorname{Flow}(\gamma, \mathcal{O}_1) = \operatorname{Flow}(\gamma, \mathcal{O}_2)$ for all cycles γ . Show that there is a unique function h from the vertices of Γ to $\mathbb{Z}_{\geq 0}$ such that

1. For every edge (i, j) of Γ ,

$$h(i) - h(j) = \begin{cases} 1 & i \leftarrow_1 j \text{ and } i \rightarrow_2 j \\ 0 & (i \rightarrow_1 j \text{ and } i \rightarrow_2 j) \text{ or } (i \leftarrow_1 j \text{ and } i \leftarrow_2 j) \\ -1 & i \rightarrow_1 j \text{ and } i \leftarrow_2 j \end{cases}$$

2. For every vertex v of Γ , we have $h(v) \ge 0$ and, for at least one vertex, we have h(v) = 0.

We define $d(\mathcal{O}_1, \mathcal{O}_2) = \sum_{v \in \Gamma} h(v)$. Our proof is by induction on d.

- (c) Explain why the base case, $d(\mathcal{O}_1, \mathcal{O}_2) = 0$, holds.
- (d) Let d > 0 and set $H = \max_{v} h(v)$. Show that there is some v_0 with h(v) = H which is a sink of \mathcal{O}_1 .
- (e) Let \mathcal{O}'_1 be the orientation obtained from \mathcal{O}_1 by a sink-source reversal at v_0 . Show that $d(\mathcal{O}'_1, \mathcal{O}_2) = d(\mathcal{O}_1, \mathcal{O}_2) 1$.