Problem Set 2: Due Monday, September 25

See the course website for homework policy.

1. Let W be the subgroup of $GL_3(\mathbb{R})$ generated by the reflections

$$s_1 = \begin{bmatrix} -1 & 0 & 0 \\ 2 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \quad s_2 = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \quad s_3 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{bmatrix}.$$

Let $D = \{(x_1, x_2, x_3) : x_1, x_2, x_3 \ge 0\}.$

- (a) Compute the rays of the (polyhedral) cones D, s_1D , s_1s_2D .
- (b) Show that W preserves the (round) cone $C = \{(x_1 : x_2 : x_3) : x_1x_2 + x_1x_3 + x_2x_3 \ge 0\}.$
- (c) Sketch how D, s_1D and s_1s_2D lie in C.
- 2. For $1 \leq i < j \leq n$, let $m_{ij} \in \{2, 3, ..., \infty\}$. Let W be the group generated by $s_1, s_2, ..., s_n$ subject to relations $s_i^2 = 1$ and $(s_i s_j)^{m_{ij}} = 1$. Define a graph Γ_2 with vertex set 1, 2, ..., n and an edge (i, j) if m_{ij} is odd, where ∞ is considered even.
 - (a) Show that the number of homomorphisms $W \to \{\pm 1\}$ is $2^{\#(\text{connected components of }\Gamma_2)}$.
 - (b) Show that s_i and s_j are conjugate in W if and only if i and j are in the same connected component of Γ_2
- 3. Let V be a vector space with basis $\alpha_1, \ldots, \alpha_n$. Let A be an $n \times n$ matrix with $A_{ii} = 2$ and $A_{ij} = 0$ if and only if $A_{ji} = 0$. Let α_i^{\vee} in V^{\vee} be the vector with $\langle \alpha_i^{\vee}, \alpha_j \rangle = A_{ij}$. Define $s_i : V \to V$ by $s_i(x) = x \langle \alpha_i^{\vee}, x \rangle \alpha_i$. Let W be the group generated by the s_i .
 - (a) Suppose that there is symmetric bilinear form (,) on V which is invariant under W, and where $(\alpha_i, \alpha_i) \neq 0$. Defining $d_i = (\alpha_i, \alpha_i)$, show that $d_i A_{ij} = d_j A_{ji}$.
 - (b) Conversely, suppose that there exist positive real numbers d_i such that $d_i A_{ij} = d_j A_{ji}$. Show that we can define a symmetric bilinear form (,) on V with $(\alpha_i, \alpha_i) = d_i$ such that s_i is the orthogonal reflection in α_i .
- 4. Let $n \geq 3$ be a positive integer. Let p be a real number larger than 1. Let V be the vector space of sequences $(a_i)_{i\in\mathbb{Z}}$ such that $a_{i+n} = pa_i$. Let the group \tilde{A}_{n-1} (see previous problem set) act on V by $w(a)_i = a_{w^{-1}(i)}$. The funny inverse is to make it a left action.
 - (a) Choose a basis for V, and write the matrices of s_1, s_2, \ldots, s_n in your basis.
 - (b) Give explicit vectors $\alpha_i \in V$ and $\alpha_i^{\vee} \in V^{\vee}$ such that $s_i(x) = x \langle \alpha_i^{\vee}, x \rangle \alpha_i$. Choose your signs such that $\langle \alpha_i^{\vee}, \rangle$ is positive on the sequence $(p^{i/n})$.
 - (c) Compute the Cartan matrix $A_{ij} = \langle \alpha_i^{\lor}, \alpha_j \rangle$. Let $D = \{x \in V : \langle \alpha_i^{\lor}, x \rangle \ge 0, \ 1 \le i \le n\}$. Let $T = \{(x_i) \in V : x_i > 0\}$.
 - (d) For n = 3, sketch the intersections of T, D and the hyperplanes α_i^{\perp} , with the unit sphere.
 - (e) Prove that $\bigcup_{w \in \tilde{A}_{n-1}} wD = T \cup \{0\}.$