Problem Set 3: Due Friday, September 29

See the course website for homework policy.

- 1. Let V be a finite dimensional real vector space equipped with a positive definite symmetric bilinear form . Let Λ be a discrete additive subgroup of V with $\text{Span}_{\mathbb{R}}(\Lambda) = V$. Define G to be the group of linear transformations $g: V \to V$ with $g(u) \cdot g(v) = u \cdot v$ and $g(\Lambda) = \Lambda$.
	- (a) Show that G is finite.
	- (b) Show that, for $g \in G$, we have $\text{Tr } g \in \mathbb{Z}$.
	- (c) Let dim $V = 2$ and let $g \in G$. Show that g has order 1, 2, 3, 4 or 6.
- 2. This problem will explore a representation where the α_i and α_i^{\vee} are not linearly independent. V and V^{\vee} be 3 dimensional, written as column and row vectors respectfully, and take

$$
\alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad \alpha_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \qquad \alpha_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \qquad \alpha_4 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}
$$

$$
\alpha_1^{\vee} = \begin{bmatrix} 2 & 0 & 0 \end{bmatrix} \quad \alpha_2^{\vee} = \begin{bmatrix} -2 & 0 & 0 \end{bmatrix} \quad \alpha_3^{\vee} = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix} \quad \alpha_4^{\vee} = \begin{bmatrix} 0 & -2 & 0 \end{bmatrix}
$$

We define $D = \{x \in V^{\vee} : \langle x, \alpha_i \rangle \geq 0\}$. Recall that s_i acts on V^{\vee} by $s_i(x) = x - \langle x, \alpha_i \rangle \alpha_i^{\vee}$.

- (a) Show that the matrix $A_{ij} = \langle \alpha_i^{\vee}, \alpha_j \rangle$ is a Cartan matrix. What are the m_{ij} ?
- (b) Let V_1^{\vee} be the affine linear space $\left\{ \begin{bmatrix} x \\ y \end{bmatrix} \right\}$ $\begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ in V_1^{\vee} . Show that W preserves V_1^{\vee} .
- (c) In terms of the coordinates (x, y) on V_1^{\vee} , write down the action of the s_i on V_1^{\vee} . Give inequalities on x and y describing $D_1 := D \cap V_1^{\vee}$.
- (d) Draw and label the domains wD_1 in the two dimensional plane V_1^{\vee} for several values of w.
- 3. This problem describes a different representation of \tilde{A}_{n-1} from the one on Problem Set 2.

Let $n \geq 3$ be a positive integer. Let V be the vector space of sequences $(a_i)_{i\in\mathbb{Z}}$ such that $a_{i+n} - a_i$ is a constant independent of i. Let \tilde{A}_{n-1} act on V by $w(a)_i = a_{w^{-1}(i)}$.

- (a) Choose a basis for V, and write the matrices of s_1, s_2, \ldots, s_n in your basis.
- (b) Give explicit vectors $\alpha_i \in V$ and $\alpha_i^{\vee} \in V^{\vee}$ such that $s_i(x) = x \langle \alpha_i^{\vee}, x \rangle \alpha_i$. Choose your signs such that $\langle \alpha_i^{\vee}, \rangle$ is positive on the point $x_i = i$.
- (c) Compute the Cartan matrix $A_{ij} = \langle \alpha_i^{\vee}, \alpha_j \rangle$. Once again, let $D = \{x \in V^{\vee} : \langle x, \alpha_i \rangle \geq 0, 1 \leq i \leq n\}.$ Let \bar{V} be the quotient of V by the vector space of constant sequences. Let \bar{V}_1 be the affine subspace $a_{i+n} = a_i + 1$ of \overline{V} . Note that $\dim \overline{V}_1 = n - 1$, which means we can draw it for $n = 3$. I'll write \bar{D} for the image of D in \bar{V} and \bar{D}_1 for the intersection $\bar{D} \cap \bar{V}_1$.
- (d) For $n = 3$, draw \bar{D}_1 , $s_1\bar{D}_1$, $s_2\bar{D}_1$, $s_3\bar{D}_1$, $s_1s_2\bar{D}_1$, $s_2s_1\bar{D}_1$ and $s_1s_2s_1\bar{D}_1$ inside \bar{V}_1 . Draw the hyperplanes fixed by s_1 , s_2 , s_3 .
- (e) Show that $\bar{V}_1 = \bigcup_{w \in \tilde{A}_{3-1}} w \bar{D}_1$.