Problem Set 4: Due Friday, October 6

See the course website for homework policy.

- (a) Describe the longest element w₀, and its action on V, when W each of A_n, B_n and D_n.
 (b) In which cases does w₀ act on V by -Id?
- 2. In this problem, we will show that T "is the set of reflections of W". We define $W, s_1, \ldots, s_n, \alpha_1, \ldots, \alpha_n$ and $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$ as usual, including the condition that $D \neq \emptyset$. We define $T = \{ws_iw^{-1} : w \in W, 1 \le i \le n\}$. Let $t \in W$ act on V^{\vee} by a reflection, meaning that t fixes a codimension 1 subspace H and acts by -1 on V^{\vee}/H . We will show that $t \in T$.

Let $t = s_{i_1} s_{i_2} \cdots s_{i_\ell}$. Put $v_k = s_{i_1} s_{i_2} \cdots s_{i_k}$.

- (a) Show that H does not pass through D° (remember, we don't know H is of the form β^{\perp} yet). Deduce that D and tD are on opposite sides of H.
- (b) Show that H does not pass through any of the $v_k D^\circ$.
- (c) Show that H is the wall along which $v_{k-1}D$ borders v_kD for some k.
- (d) Deduce that $t \in T$.
- 3. Let u and $v \in W$. The point of this problem is to show that $inv(u) \subseteq inv(v)$ if and only if there is a reduced word $s_{i_1}s_{i_2}\cdots s_{i_\ell}$ for v such that $u = s_{i_1}s_{i_2}\cdots s_{i_k}$ for some $k \leq \ell$.
 - (a) Show that, if $s_{i_1}s_{i_2}\cdots s_{i_\ell}$ for v such that $u = s_{i_1}s_{i_2}\cdots s_{i_k}$, then $inv(u) \subseteq inv(v)$.
 - (b) Show the reverse implication. Hint: Recall the following lemma from class: If s_i is a left ascent of w, then $inv(s_iw) = s_i(inv(w) \setminus \{s_i\})s_i$.
- 4. Let W be a Coxeter group with s_i and m_{ij} as usual. Given a word in W, the (i, j) braid length m_{ij} length m_{ij}

move is to replace the substring $\overbrace{s_is_js_is_j\cdots}$ by $\overbrace{s_js_is_js_i\cdots}$. Let $s_{i_1}s_{i_2}\cdots s_{i_\ell}$ and $s_{j_1}s_{j_2}\cdots s_{j_\ell}$ be two reduced words with the same product w. The aim of this problem is to show that we can transform $s_{i_1}s_{i_2}\cdots s_{i_\ell}$ to $s_{j_1}s_{j_2}\cdots s_{j_\ell}$ using only braid moves.

Our proof is by induction on ℓ , so assume we have proven the result for any pair of words of shorter length.

(a) If $i_1 = j_1$, show we are done.

Suppose from now on that $i_1 \neq j_1$. We abbreviate $i_1 = i, j_1 = j$ and $m_{ij} = m$.

(b) Show that all m reflections in $\langle s_i, s_j \rangle$ are inversions of w. (Hint: Geometry!)

length m

- (c) Show that there is a reduced word for w of the form $\overline{s_i s_j s_i}, \overline{s_j \cdots s_{k_{m+1}}}, s_{k_{m+2}}, \overline{s_{k_{m+2}}}, \overline$
- (d) Conclude the proof.