Problem Set 6: Due Friday, October 27

See the course website for homework policy.

Note: Because I expect the course to be providing an overview of Lie groups at this point, the problems are not closely tied to the current material. They are either things that I think it would be nice for you to know, or things which will be useful when we start studying invariant theory.

- 1. Let Φ be a finite root system with simple roots $\alpha_1, \alpha_2, \ldots, \alpha_n$.
 - (a) Let s_i be a simple generator and β a positive root other than α_i . Show that $s_i\beta$ is a **positive** root. (Hint: Quote an earlier problem.)
 - Define $\rho = \frac{1}{2} \sum_{\beta \in \Phi^+} \beta$.
 - (b) Show that $\langle \alpha_i^{\vee}, \rho \rangle = 1$ for $1 \le i \le n$.
 - (c) Take our usual models of the finite classical crystallographic root systems: $\{e_i e_j\}$ in type A, $\{\pm e_i \pm e_j, e_k\}$ in type B, $\{\pm e_i \pm e_j, 2e_k\}$ in type C and $\{\pm e_i \pm e_j\}$ in type D and compute ρ in these cases.

For a reflection $t \in T$, let β_t be the positive root with $t\beta_t = -\beta_t$.

- (d) For any $w \in W$, show that $w(\rho) = \rho \sum_{t \in inv(w)} \beta_t$
- 2. This problem describes a model for the group \tilde{C}_n similar to our model for \tilde{A}_{n-1} in terms of affine permutations. We define \tilde{C}_n by its Coxeter diagram:

$$s_0 - s_1 - \cdots - s_{n-1} - s_n$$

Let $Z = \{k + 1/2 : k \in \mathbb{Z}\}$. Let \tilde{S}_n^C be the set of bijections $w : Z \to Z$ such that

w(z+2n) = w(z) + 2n and w(-z) = -w(z).

Our goal will be to show $\tilde{S}_n^C \cong \tilde{C}_n$.

- (a) Describe a map $\tilde{C}_n \to \tilde{S}_n^C$ by describing where to send the generators s_0, s_1, \ldots, s_n . Let V^{\vee} be the vector space of functions $a: Z \to \mathbb{R}$ obeying a(-z) = -a(z) and such that a(z+2n) - a(z) is a constant independent of z.
- (b) Choose a basis for V^{\vee} and write down the action of s_0, \ldots, s_n in that basis. Write $s_i(x)$ in the form $x \langle \alpha_i, x \rangle \alpha_i^{\vee}$ for some roots α_i and α_i^{\vee} .
- (c) Check that the α_i and α_i^{\vee} pair by the Cartan matrix for \tilde{C}_n .
- (d) Show that $\tilde{C}_n \to \tilde{S}_n^C$ is an isomorphism.

3. Let W be a Coxeter group with generators s_1, s_2, \ldots, s_n . For $I \subseteq [n]$, we defined W_I to be the subgroup generated by $\{s_i : i \in I\}$. We define IW and W^I by

 ${}^{I}W = \{ w \in W : s_i \text{ is a left ascent of } w \text{ for all } i \in I \}$

 $W^{I} = \{ w \in W : s_{i} \text{ is a right ascent of } w \text{ for all } i \in I \}.$

- (a) Show that each $w \in W$ can be factored as uv, with $u \in W_I$ and $v \in {}^IW$.
- (b) Show that we have $v \in {}^{I}W$ if and only if $inv(v) \cap W_{I} = \emptyset$.
- (c) Suppose that w = uv with $u \in W_I$ and $v \in {}^{I}W$. Show that $inv(u) = inv(w) \cap W_I$.
- (d) Let $w \in W$. Show that there is a unique factorization of w as w = uv with $u \in W_I$ and $v \in {}^{I}W$. The unique u and v are denoted w_I and ${}^{I}w$. We define ${}_{I}w$ and w^{I} similarly.
- (e) The next two pages of this problem set feature the hyperplane arrangement A_3 (drawn in stereographic projection) with regions D, s_1D , s_2D , s_3D labeled. Set $I = \{1, 3\}$. On the first page, use four colors to indicate which w's have w_I equal to 1, s_1 , s_3 or s_1s_3 . On the second page, outline the cosets uW_I and color according to the value of $_Iw$.

