
Problem Set 8: Due Friday, November 10

See the course website for homework policy.

1. For x = (x1, . . . , xn) ∈ Rn>0 and a = (a1, . . . , an) ∈ Rn, we adopt xa as shorthand for
∏
xaii .

(a) Let the Coxeter group Bn act on Rn in the standard manner, and recall that we computed
that ρ = (1/2, 3/2, . . . , n− 1/2) in this case. Show that

∑
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(b) Let the Coxeter group Cn act on Rn in the standard manner, and recall that we computed

that ρ = (1, 2, . . . , n) in this case. Show that

∑
w∈Cn

(−1)`(w)xw(ρ) = det
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(c) Let the Coxeter group Dn act on Rn in the standard manner, and recall that we computed

that ρ = (0, 1, 2, . . . , n− 1) in this case. Show that

∑
w∈Dn

(−1)`(w)xw(ρ) = det
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2. Let W be a Coxeter group and WI a parabolic subgroup. We recall the minimal coset repre-

sentatives W I from Problem Set 6, Problem 3. We put [n] = {1, 2, 3, . . . , n}.
(a) Show that ∑

w∈W
q`(w) =

 ∑
w∈WI

q`(w)

 ∑
w∈W I

q`(w)

 .

Take W = Sn and WI = Sk × Sn−k (in the obvious way).

(b) Give a bijection between W I and the k-element subsets of [n] such that, if w ∈ W I

corresponds to A ⊂ [n], then `(w) = #{(a, b) ∈ A× ([n] \A) : a > b}.
(c) Explain what formula you have proved for∑

A⊂[n]
|A|=k

q#{(a,b)∈A×([n]\A):a>b}.


