Problem Set 9: Due Friday, November 17

See the course website for homework policy.

- 1. (a) Let R be a commutative ring, and $n \in R$ a nilpotent element, meaning $n^N = 0$ for some N > 0. Show that 1 + n is a unit.
 - (b) Let R be a commutative ring, \mathfrak{m} a maximal ideal and N a positive integer. Show that R/\mathfrak{m}^N is a local ring, meaning that every element is either in \mathfrak{m} or is a unit.
- 2. The aim of this question is to prove the following lemma: Let R be a noetherian ring with maximal ideal \mathfrak{m} . Let G be a group of automorphisms of R which take \mathfrak{m} to itself. Let $S = R^G$ and let $\mathfrak{n} = S \cap \mathfrak{m}$. Then there is an integer N such that $\mathfrak{m}^N \subset R\mathfrak{n}$.
 - (a) Show that, for any $x \in \mathfrak{m}$, we have $x^{|G|} \in R\mathfrak{n}$. (Hint: Consider $\prod_{g \in G} (x g(x))$.)
 - (b) Let $\mathfrak{m} = \langle x_1, x_2, \dots, x_k \rangle$; since R is noetherian, this is a finite list. Show that, for any y_1 , $y_2, \dots, y_{k|G|} \in \mathfrak{m}$, we have $\prod y_i \in R\mathfrak{n}$.
- 3. This question introduces the divided difference operators in type A. Define the operator ∂_i on $\mathbb{R}[x_1, \ldots, x_n]$ by

$$\partial_i(f) = \frac{f(x_1, x_2, \dots, x_i, x_{i+1}, \dots, x_n) - f(x_1, x_2, \dots, x_{i+1}, x_i, \dots, x_n)}{x_i - x_{i+1}}.$$

- (a) Show that, if $\partial_1 f = \partial_2 f = \cdots = \partial_{n-1} f = 0$, then f is symmetric.
- (b) Show that $\partial_i^2 f = 0$ for any $f \in \mathbb{R}[x_1, \dots, x_n]$.
- (c) Compute all nonzero polynomials which can be obtained by repeatedly applying ∂_1 and ∂_2 to $x_1^2 x_2$.
- 4. In class, we showed how to compute $\sum_{w \in W} q^{\ell(w)}$ for W a finite crystallographic group. In this problem we will give a method which, in theory, computes $\sum_{w \in W} q^{\ell(w)}$ for any Coxeter group W. We recall the notations W_I and W^I from Problem Set 6, and the formula

$$\sum_{w \in W^I} q^{\ell(w)} = \frac{\sum_{w \in W} q^{\ell(w)}}{\sum_{w \in W_I} q^{\ell(w)}}$$

from Problem Set 8. We write s_1, s_2, \ldots, s_n for the simple generators of W and $[n] = \{1, 2, \ldots, n\}$.

- (a) Show that, if W is finite, then the only element of W for which s_1, s_2, \ldots, s_n are all right descents is w_0 . Show that, if W is infinite, then no element has this property.
- (b) Show that

$$\sum_{I\subseteq[n]}(-1)^{n-|I|}\sum_{w\in W^I}q^{\ell(w)} = \begin{cases} q^{\ell(w_0)} & W \text{ finite} \\ 0 & W \text{ infinite} \end{cases}.$$

- (c) Check that the above formula is correct for $I_2(m)$.
- (d) Use the above formula to compute $\sum_{w \in \tilde{A}_2} q^{\ell(w)}$. You may take as known that $\sum_{w \in A_2} q^{\ell(w)} = (1+q)(1+q+q^2)$ and similar formulas for the smaller parabolic subgroups.
- (e) Prove that, for any W, the formal sum $\sum_{w \in W} q^{\ell(w)}$ is a rational function of q.