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2 POSET STRUCTURE OF COXETER GROUPS

October 18 – Introduction to Weak Order

We started talking about weak order, including a review of some concepts that we had
discussed before. We described the weak order for finite Coxeter groups of type A,B,C,D,
and their affine counterparts Ã, B̃, C̃, D̃. At the end of class, we had time to discuss some
basic poset vocabulary.

There are two types of weak order: right and left.

Definition. We define

• u ≤ w in right weak order if l(w) = l(u) + l(u−1w), or equivalently, w = uv for
some v, with l(w) = l(u) + l(v).
• u ≤ w in left weak order if l(w) = l(u)+ l(wu−1), or equivalently, w = vu for some
v, with l(w) = l(u) + l(v).

We denote right order by ≤R and left order by ≤L. We will usually prefer right order.

It is easily checked that both left and right weak orders are partial orders.
Right and left weak orders are isomorphic via the map w 7→ w−1. That is, u ≤R w if and

only if u−1 ≤L w−1.

1

s1 s2

s2s1s1s2

s1s2s1

Figure 1. Right weak order on A2.

1

s1 s2

s2s1s1s2

s1s2s1

Figure 2. Left weak order on A2.

Recall that we have a criterion for weak order in terms of inversion sets:

Proposition. We have u ≤R w if and only if inv(u) ⊆ inv(w).

Proof. (⇒) First suppose that u ≤R w. By definition, we have v with w = uv and l(w) =
l(u)+l(v). Let si1si2 · · · sik be a reduced word for v and consider the sequence u, usi1 , usi1si2 ,
. . ., usi1 · · · sik = uv = w, which is increasing in length (hence number of inversions) at each
step. At each step we have:

inv(usi1) = inv(u) ∪ {usi1u−1}
inv(usi1si2) = inv(usi1) ∪ {(usi1)si2(usi1)−1}

...

Since we are only adding inversions in each step, we conclude that inv(u) ⊆ inv(w).
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(⇐) On the other hand, suppose inv(u) ⊆ inv(w). Then as usual, choose a geometric
representation of W , choose points x ∈ D◦ and y ∈ wD◦ and consider the line xy. The line
only crosses the (finitely many) hyperplanes that separate D◦ from wD◦, and only crosses
them in length-increasing directions. �

We now describe a few conventions for Sn. Firstly, we denote by si the transposition
(i i + 1); we will also use 1-line notation to describe elements of Sn. The one line notation
w1w2 · · ·wn means w(i) = wi. Using this notation, right multiplication by sk interchanges
the numbers in positions k and k + 1, while multiplication on the left by sk interchanges
the values k and k + 1.

We can see this in the diagrams below. Moving from 132 to 312 in the right order diagram
is multiplication by s1, and it interchanges 1 and 3, which are the numbers in positions 1
and 2. Moving from 132 to 231 in the right order diagram is multiplication on the left by
s1, and it interchanges 1 and 2, which are the numbers with values 1 and 2.

123

213 132

231 312

321

Figure 3. Right weak order on
S3, using 1-line notation.

123

213 132

231 312

321

Figure 4. Left weak order on
S3, using 1-line notation.

Using 1-line notation, it is easy to relate the diagrams for weak order to the hyperplane
arrangement: w(1)w(2) · · ·w(n) corresponds to the region xw(1) < xw(2) < · · · < xw(n).

A couple more notes about conventions:

(1) The action on the dual space is w · xi = xw−1(i). We act by the inverse so that the
action is a left action.

(2) (i j) ∈ inv(w) for i < j if i comes after j in the 1-line notation for w.

Recall that we can realizeBn ⊂ S2n as acting on the set {−n,−n+1, . . . ,−1, 1, . . . , n−1, n}
via permutations w ∈ S2n with the restriction that w(−i) = −w(i). In 1-line notation, w is
denoted by w(−n) · · ·w(−2)w(−1)w(1)w(2) · · ·w(n). The inversions of Bn are the same as
those of S2n, except we identify (i j) and (−i − j).

Remark. In our diagrams for Bn, we usually omit where the negative numbers map because
this is determined by the required symmetry of our maps. In the diagram above, we would
omit the first two numbers of each element written in 1-line notation.
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123

213 132

231 312

321

x1 < x2 < x3

x1 < x3 < x2x2 < x1 < x3

x2 < x3 < x1 x3 < x1 < x2

x3 < x2 < x1

Figure 5. The correspondence between the 1-line notation for elements of S3

and the regions of A2.

123

213 132

231 312

321

x1 < x2 < x3

x1 < x3 < x2x2 < x1 < x3

x2 < x3 < x1 x3 < x1 < x2

x3 < x2 < x1

Figure 6. The correspondence
between the 1-line notation for
elements of S3 and the regions
of A2.

∅

(1 2) (2 3)

(1 2), (1 3) (2 3), (1 3)

(1 2), (1 3), (2 3)

Figure 7. The inversions cor-
responding to each element of
S3, or equivalently, each region
of A2.

Recall that Dn ⊂ Bn ⊂ S2n, and Dn consists of the permutations of Bn which (as permu-
tation matrices) have an even number of (−) signs. In terms of 1-line notation, this means
that there are an even number of (−) signs among w(1), w(2), . . . , w(n).

The diagram for Dn is the same. We just discard the inversions (ii), which corresponds
to forgetting the hyperplanes {xi = −xi} = {xi = 0} of Bn.
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2112

2112 1221

1221 1221

1221 2112

2112

Figure 8. Right weak order on
B2, using 1-line notation.

∅

(1 1) (1 2)

(1 1), (2 1) (1 2), (2 2)

(1 1), (2 1), (2, 2) (1 2), (2 2), (1 2)

all

Figure 9. The corresponding
inversions in B2.

Now we move on to the affine groups. Recall that Ãn−1 can be thought of as the set of
maps f : Z→ Z with f(i+ n) = f(i) + n and

∑n
i=1 f(k) =

∑n
i=1 k. To see which inversions

are present, we look at what is out of order after applying f . Our restrictions on f force
integers congruent mod n to be in order, so it suffices to look at what happens mod n.
Moreover, (i j) being out of order is equivalent to (i + n j + n) being out of order. We’ll
abbreviate · · · (i j)(i+ n j + n)(i+ 2n j + 2n) · · · to (i+ kn j + kn).

···−2 −1 0 1 2···

···−3 0 −1 2 1··· ···−1 −2 1 0 3 2···

···0 −3 2 −1 4··· ···−4 1 −2 3 0 5···

...
...

Figure 10. The right weak or-
der on Ã1, in 1-line notation.

∅

(1+2k 2+2k) (2k 1+2k)

(1+2k 2+2k), (1+2k 4+2k) (2k 1+2k), (2k 3+2k)

...
...

Figure 11. The corresponding
inversions in Ã1.
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Recall that C̃n ⊂ Ã2n−1 can be thought of as the maps f : 1
2

+ Z → 1
2

+ Z with the
restrictions that f(i + 2n) = f(i) + 2n and f(−i) = −f(i). Note that some other sources
define C̃n as maps f : Z→ Z with f(i+ 2n) = f(i) + 2n and f(1− i) = 1− f(i).

We have the inclusions
D̃n ⊂ B̃n ⊂ C̃n ⊂ Ã2n−1

To go from C̃n to B̃n, we forget the inversion (i j) with i + j ≡ 4n (8n). To go from B̃n to
D̃n, we forget the inversions (i j) where i+ j ≡ 0 (4n).

Definition. A poset is a set P with a relation ≤ which is

(1) reflexive (x ≤ x)
(2) anti-symmetric (x ≤ y and y ≤ x implies x = y)
(3) transitive (x ≤ y ≤ z implies x ≤ z)

Note that some books may define < instead.

Definition. We say that x covers y, written xm y, if x > y and 6 ∃z with x > z > y.
The Hasse diagram of P is the directed graph with x → y if x m y. In the previous

diagrams, edges “point down.”

Definition. A poset P is a lattice if any two elements x, y ∈ P have

(1) a join, written x ∨ y, which is an element of P that satisfies x ∨ y ≥ x, y and if
z ≥ x, y, then z ≥ x ∨ y;

(2) a meet, written x ∧ y, which is an element of P that satisfies x ∧ y ≤ x, y and if
z ≤ x, y, then z ≤ x ∧ y.

October 21 – Introduction to lattices

Remark. Before proceeding with the main material of today’s class, we take a moment to
mention the word “permutohedron”, which hasn’t come up yet, but will be useful as we move
towards talking about other polytopes. While the hyperplane arrangement is probably the
“correct” object to consider in talking about the geometry of a Coxeter group, polytopes
provide a dual option.

We consider our usual setup of a Coxeter group W , a Cartan matrix, roots {αi}, and
coroots {α∨i }, and define the chamber D◦ as before. We assume that the roots, and likewise
the coroots, are linearly independent.

Now let ρ ∈ D◦, and define P to be the convex hull of the orbit Wρ. We say that P is the
W-permutohedron (though perhaps it should be a W -permutohedron). The examples of
A2 and A3 are pictured in Figures 12 and 13. We remark that the edge length of the A2

permutahedron are b− a and c− b; Professor Speyer recommends NOT drawing them to be
the same length.

The W -permutohedron is dual to the hyperplane arrangement, in the following sense. If
P ⊂ V is any polytope, and F is a face, then the normal cone of F is

NF (P ) := {θ ∈ V ∨ | 〈θ, ·〉 , restricted to P , attains its maximum on F}
In our case, the k-dimensional faces of the W -permutohedron are dual to the (n − k)-
dimensional cones of the hyperplane arrangement.

Now we return to the subject of lattices. Our goal today is to show that the weak order
on a finite Coxeter group is no mere poset, but in fact a lattice (and even outside finite type,
it is a semilattice, which we’ll introduce later).
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(a, b, c)

(a, c, b)

(b, c, a)

(c, b, a)

(b, a, c)

(c, a, b)

Figure 12. An A2-permutohedron.

Figure 13. An A3-permutohedron.

Definition. A poset P is a lattice if for any elements x, y, there exist elements x ∨ y (the
join) and x ∧ y (the meet) such that:

• x ∨ y ≥ x and y, and if z ≥ x and y, then z ≥ x ∨ y (i.e., x ∨ y is the least upper
bound of x and y)
• x ∧ y ≤ x and y, and if z ≤ x and y, then z ≤ x ∧ y (i.e., x ∧ y is the greatest lower

bound of x and y)

To remember which of ∨ and ∧ is which, one can think of ∪ and ∩ which are, respectively,
the join and meet on the lattice of subsets of a set.
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Clearly the poset structure determines the join and meet operations. In fact, the reverse
is also true: the poset structure in a lattice is completely determined by the join and meet
operations, because

x ≤ y ⇔ x = x ∧ y ⇔ y = x ∨ y
We’ll examine in a homework problem what conditions on binary operations ∨ and ∧ result
in a valid poset defined this way.

Since we like dealing with infinite Coxeter groups, we need to discuss meets and joins of
infinite sets as well. For any subset X of a poset P , we’ll write

∨
X for an element z of P

such that z ≥ x for all x ∈ X and such that, if y ≥ x for all x ∈ X, then z ≥ y. We define∧
X dually.

Definition. A complete lattice is a poset in which arbitrary subsets have joins and meets.

This is certainly true of a finite lattice1. The only nonobvious aspect of the definition we
have to check is what the join and meet of the empty set are. In fact, for a finite lattice L,∧

∅ =
∨

L,
∨
∅ =

∧
L

The former element is the unique maximal element of the lattice, and we call it 1̂. The latter
is the unique minimal element, and we call it 0̂.

In order to show that a poset is a lattice, it’s enough to show that it has meets. Precisely,
we have

Lemma. If a poset P has a unique maximal element 1̂, and the meet of any subset exists2,
P is a complete lattice.

Proof. (sketch) We can define the join of a subset X by∨
X =

∧
{y | y ≥ x ∀x ∈ X}.

In other words, the least upper bound of X is the greatest lower bound of all upper bounds
of X. �

Remark. One neat example of this lemma is given by the lattice of subgroups of a group.
We know that this poset has all meets, as the intersection of subgroups is a group; from there,
we define the join of a set of subgroups to be the intersection of all subgroups containing
them, which is exactly the construction used in the lemma.

Still, this lemma is not quite enough for showing that weak order is a lattice, because it’s
not immediately clear how to construct joints or meets. So we turn to a slightly stronger
lemma which is both fun and cute.

Lemma (Björner, Edelman, Ziegler). Let P be a finite poset with a unique maximal element

1̂ such that, if xl z and y l z, x ∧ y exists. Then P is a lattice.

Proof. It suffices to show that x ∧ y exists for any x, y ∈ P . Then since P is a finite poset,
we know all meets exist, and we can use the previous lemma.

Now we want to prove this by induction; thus, in order to do induction on our poset, we
complete it to a total order in some way. So we label the elements of the poset x1, . . . , xN
such that if xi ≤ xj, then i ≤ j. We’ll prove that if y, z ≤ xk, then y ∧ z exists, by induction

1Except for the empty poset, but let’s not worry about that too much.
2This hypothesis is a little redundant, because 1̂ is the meet of the empty set.
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on k. Here we note that, in order for this to actually prove the desired result, we need a
unique maximal element to exist, so that the statement for k = N proves the result.

In the base case k = 1, if y, z ≤ x1, we actually have y = z = x1, and y ∧ z = x1.
Now we proceed to the induction step. Given y, z ≤ xk, we choose elements xi and xj

such that y ≤ xil xk and z ≤ xj l xk. By the hypothesis of the lemma, xi ∧ xj exists. Now
y, xi ∧ xj ≤ xi, so by the induction hypothesis, y ∧ (xi ∧ xj) exists. Likewise, z, xi ∧ xj ≤ xj,
so by the induction hypothesis z ∧ (xi ∧ xj) exists. Finally, we can apply the induction
hypothesis once more and conclude that (y ∧ (xi ∧ xj)) ∧ (z ∧ (xi ∧ xj)) = y ∧ (xi ∧ xj) ∧ z
exists. This sequence of reasoning is captured by the following diagram, where straight lines
represent cover relations and wavy lines represent chains.

xk

xi xj

xi ∧ xj

y z

y ∧ (xi ∧ xj) z ∧ (xi ∧ xj)

y ∧ (xi ∧ xj) ∧ z

Figure 14. The structure of the proof of the BEZ lemma. We show the
displayed meets exist from top to bottom.

But now we claim that y∧ (xi∧xj)∧ z = y∧ z. Indeed, any lower bound of y and z is also
a lower bound of xi and xj, and thus also xi ∧ xj, so wedging with xi ∧ xj is redundant. �

Remark. The structure shown in Figure 22 shows up in multiple other arguments: the
proof of the Jordan-Hölder theorem for subgroups, the Diamond Lemma in ring theory,
and Buchberger’s S-pair reducing criterion for Gröbner bases. So this diagram is worth
remembering.

So what does this lemma allow us to do in the case of a Coxeter group? In the case of W
finite, we can very directly see that weak order makes it a lattice. Checking the conditions
of the BEZ lemma:

• We have a unique maximal element 1̂, namely the longest word w0.
• Now suppose we have two cover relations u mR usi, u m −Rusj (so that `(usi) =
`(usj) = `(u) − 1). We want to show that the meet usi ∧ usj exists. We claim that
it is given by u sisjsi · · ·︸ ︷︷ ︸

mij

, as illustrated in the diagram below.
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uD

usjDusiD

(u sisjsi · · ·︸ ︷︷ ︸
mij

)D

...

D

Certainly u sisjsi · · ·︸ ︷︷ ︸
mij

is a lower bound of usi and usj in the weak order. To see that

it is the greatest lower bound, suppose that v is any other lower bound of usi and
usj. Then we have inv(v) ⊂ inv(usi)∩ inv(usj). Then inv(v) contains neither usiu

−1

(since this is not an inversion of usi) nor usju
−1 (since this is not an inversion of usj).

Thus vD lies on the same side of the associated fixed hyperplanes as u sisjsi · · ·︸ ︷︷ ︸
mij

. Thus

v ≤R u sisjsi · · ·︸ ︷︷ ︸
mij

.

Corollary. For W any Coxeter group and element u, v ∈ W with u ≤R v, the interval

[u, v] := {x ∈ W | u ≤R x ≤R v}

is a lattice.

Proof. Note first that [u, v] is finite: any element must have an inversion set contained in
that of v, which is a finite set. Thus we can apply the BEZ lemma. We can use the same
argument as above: we only need to know that the construction in our argument doesn’t
leave the interval [u, v]. But if wsi lR w, wsj lR w are elements as in the above lemma in
[u, v], u is a lower bound for both of them, and thus wsi ∧ wsj ≥R u. �

Corollary. Let W be a Coxeter group, and X ⊂ W any subset. Then:

1) if X 6= ∅,
∧
X exists.

2) if X has an upper bound,
∨
X exists.
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Proof. To prove 1), suppose x0 ∈ X. Then we apply the above corollary to the interval
[e, x0], and get ∧

X =
∨
{y | ∀x ∈ X, y ≤R x}

That is, once we have some element in X, all lower bounds for X are forced into the interval
below that element, and we can take their join there.

Now to prove 2), Let z be an upper bound for X. Then the set of all upper bounds is
nonempty, and so by part 1) we can take their meet and obtain∨

X =
∧
{y | ∀x ∈ X, x ≤R y}.

�

A poset with the two properties articulated in the previous corollary is called a complete
semilattice – a poset in which nonempty meets exist, and joins exist as long as some upper
bound does. For example, the weak order on the infinite dihedral group looks like this:

...

Two elements from the two different branches don’t have a join, but that’s because they
don’t have any common upper bound.

October 23 – Tamari Lattices and Related Topics

Today’s class began with an introduction to Tamari Lattices, denoted Tn, with an overview
of their history and discovery. We then described the Loday Construction, which defines

a map from the symmetric group Sn Tn
π . Since this lecture is historical, I’ll try

to do a better job than usual citing sources. To begin with, let me recommend Nathan
Reading’s From the Tamari lattice to Cambrian lattices and beyond3 and Ceballos, Santos
and Ziegler, Many non-equivalent realizations of the associahedron4, two sources which I
found very helpful in preparing this lecture.

Definition. Consider all the ways of parenthesizing a product of n + 1 terms. Let these
parenthesizations be vertices of a graph, with an edge between two parenthesizations signi-
fying that they differ by a single association. This graph is called a Tamari Lattice , and
is denoted Tn.

Tamari Lattices are in fact directed graphs, given that we choose an orientation of the

edge x(yz) (xy)z . We choose the orientation as follows: x(yz) (xy)z .

3published in “Associahedra, Tamari lattices and related structures”, 293–322, Prog. Math. Phys., 299,
Birkhäuser/Springer, Basel, 2012

4Combinatorica 35 (2015), no. 5, 513–551
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Example. In T2, the vertices correspond to each way to parenthesize a product of 3 terms.
We have only two vertices, with an edge connecting them:

a(bc) (ab)c

Example. In T3, there exists 5 parenthesizations of a product of 4 terms.

(a(b(cd))

a((bc)d)

(ab)(cd)

(a(bc))d

((ab)c)d

Figure 15. The Tamari Lattice T3.

It is not immediately clear that a Tamari Lattice is in fact a lattice. It is easy to verify
that Tn is acyclic as a directional graph, so taking the transitive closure of Tn turns a Tamari
Lattice into a poset.

Theorem. (Tamari, 19515) Tn is a lattice.

The order of Tn can be counted via the Catalan numbers. The Catalan numbers are
prolific within the realm of combinatorics, and count a myriad of different things. Today,
we focus on 3 of them, one of which being the order of Tn. The others are the number of
Binary Trees with n+ 1 leaves, and the number of triangulations of an (n+ 2)-gon. Later,
a belief formed that a Tamari Lattice should be realized as an Associahedron .

Definition. An Associahedron is an n − 1 polytope whose vertices are indexed by paren-
thesizations of a product of n − 1 terms, where edges correspond to differing by a single
association (as with Tamari Lattices). In addition, n− k faces should correspond to paren-
thesizations with precisely k parenthesis pairs.

The associahedra corresponding to T2, T3 are identical to the above. The associahedron
corresponding to T4 was detailed in the handout given in class. Associahedra have a rich
history and are connected to Coxeter Groups and Cluster Algebras. A brief history is detailed
below:

• (Stasheff, 19636) First constructed an associahedron as a purely topological object.

5Ph. D. thesis, later published in 1962 as ”The algebra of bracketings and their enumeration”, Nieuw
Archief voor Wiskunde, Ser. 3, 10: 131–146

6“Homotopy associativity of H-spaces. I, II”, Transactions of the American Mathematical Society, 108:
293–312 (1963)
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Figure 16. Binary Trees with 4 Leaves.

Figure 17. Triangulations of a 5-gon.

• (Haiman, 1984, unpublished) and (Lee, 19897) constructed the associahedron as a
polytope.
• (Gelfand-Kaparanov-Zelensky, 19908) and (Billera-Sturmfels, 19929) associated the

triangulations of any points in Rd with a polytope, denoted the secondary polytope.

7“The associahedron and triangulations of the n-gon”, European J. Combinatorics 10 (1989),no. 6, 551-
560.

8“Newton polytopes of principal A-determinants”, Soviet Math. Doklady 40 (1990), 278–281. See also
their book “Discriminants, Resultants, andMultidimensional Determinants”, 1994

9Fiber polytopes.Annals of Math. 135 (1992), 527–549
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• Motivated by Cluster Algebras, a notion of W -associahedron for any finite crystallo-
graphic Coxeter group is introduced in (Chapaton-Fomin-Zelevinsky, 200210).

We now develop the Loday Construction , which constructs a projection map Sn Tn
π ,

with an associated map from a permutahedron (resp. Sn) to an associaherdron (resp. Tn).
Such a construction was introduced by (Tonks, 199711), and written and detailed very clearly
by (Loday, 200412).

Given (x1, . . . , xn) ∈ Rn, we can build a binary tree with n+1 leaves, defined in R2. Inter-
nal vertices of the tree are of the form (i, xi), with leaves at (1/2,−∞), (3/2,−∞), . . . , (n+
1/2,−∞). To define the construction, we first consider the case where xi 6= xj where i 6= j.
If this is the case, we can totally order the xi. We consider the case in R6 explicitly. Suppose
that

x3 < x2 < x4 < x6 < x1 < x5

We graph (i, xi) first:

We identify points on (n+ 1/2,−∞) at the x-axis for each 0 ≤ n ≤ 6:

10“Polytopal realizations of generalized associahedra”, Canad. Math. Bull. 45 (2002), no. 4, 537–566
11Relating the associahedron and the permutohedron, in Operads: Proceedings of Renaissance Conferences

(Hartford, CT/Luminy, 1995), J.-L. Loday, J.D. Stasheff and A.A.Voronov, eds., Contemp. Math., vol. 202,
Amer. Math. Soc., Providence, RI, 1997, 33–36

12“Realization of the Stasheff polytope”, Arch. Math. (Basel) 83 (2004), no. 3, 267–278
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Then, beginning at the smallest xi, (in this case, x3), we draw an edge to its closest neighbors
in the x-coordinate, then continue to the next xi.

Clearly, the tree associated to (x1, . . . , xn) only depends on which region of the Sn hyper-
plane arrangement (x1, . . . , xn) lies in. We depict the result for S3 in Figure 26.

x1 < x2 < x3

x1 < x3 < x2x2 < x1 < x3

x2 < x3 < x1 x3 < x1 < x2

x3 < x2 < x1

Figure 18. Loday’s map from R3 to T3 as a coarsening of the S3-hyperplane arrangement

We note that the cones x1 < x3 < x2 and x3 < x1 < x2 give rise to trees which are
topologically the same, differing only in what height we draw their vertices at. In general,
Loday’s map gives us a map π : Sn → Tn and thus a coarsening of the Sn hyperplane
arrangement.

Loday also uses this construction to give coordinates for the vertices of the associahedron.
Number the internal vertices of our tree T as (v1, v2, . . . , vn) from left to right. Let ck(T )
be the number of pairs of leaves (i, j) where i is a left descendent of vk and j is a right
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descendent.

3

2

1

3

2

1

3

2

1

3

2

1

4

1 1

So our vertices are (1, 2, 3), (2, 1, 3), (3, 1, 2), (3, 2, 1) and (1, 4, 1). The dual fan is the
corresponding coarsening of the Sn hyperplane arrangement. See Figure 19.

Figure 19. The S3 permutahedron and associahedron, with their normal fans

Since Sn and Tn are both lattices, it makes sense to ask whether π is a lattice homomor-
phism. It is, as proved by Reading in 2004.

Theorem. (Reading, 2004) π is a lattice homomorphism, which means that

π(x ∨ y) = π(x) ∨ π(y)

and
π(x ∧ y) = π(x) ∧ π(y)

for all x, y.

This procedure of relating polytopes and lattices is one of many.

(1) The Cyclohedron (is a polytope whose vertices correspond to triangulations of a 2n-
gon with symmetry under 180◦ rotation). This was first devised by Taubes, then
with the help of Reiner, was made into a polytope, then a lattice. Moreover, the
cyclohedron graph turned out to be orientable in many ways, all of which gave lattices.

(2) For Gelfand-Kaparanov-Zelensky, coordinates of the associahedron polytope depend
on how the n+2 points lie in R2. Different n+2-gons give different lattice structures.

(3) Fomin-Zelevinsky associate a Cluster Algebra to any finite crystallographic Cartain
Matrix, and thus a polytope. A natural orientation of this polytope follows from the
chosen orientation of the Coxeter diagram.

(4) Given a finite coxeter group W , an orientation Ω of Γ, Reading defines a quotient

W Camb(Ω)π

Where Camb(Ω) is a Cambrian Lattice . Later, Holweg, Lange, and H. Thomas
defined a corresponding associahedron. Reading and Speyer later generalized this re-
sult, removing the hypothesis that |W | <∞, and connects these to Cluster Algebras.
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October 25 – Lattice Congruences

Definition. Let L1 and L2 be lattices. A lattice homomorphism is a map σ : L1 → L2

such that σ(x∨y) = σ(x)∨σ(y) and σ(x∧y) = σ(x)∧σ(y). If L1 and L2 are complete lattices,
a complete lattice homomorphism has σ(

∨
X) =

∨
σ(x) and σ(

∧
X) =

∧
σ(X) for all

X ⊂ L1.

Note that since meet and join determine the partial order, (complete) lattice homomor-
phisms are order-preserving. We also have that σ(0̂) = 0̂ and σ(1̂) = 1̂.

Since the image of σ is a sublattice of L2, we can factor σ as a surjection followed by an
injection. We focus on surjective lattice homomorphisms. Given σ : L1 → L2, we get an
equivalence relation θ (or ≡θ) on L1 where x ≡θ y if σ(x) = σ(y). As a set, we can identify
σ(L1) with L1/θ. Knowing L1 and θ determines ∨ and ∧ as functions on L1/θ, so (L1, θ)
determines the partial order on L1/θ. We’ll describe quotient lattices via describing all such
equivalence relations.

So: what equivalence relations θ on a lattice L give a lattice structure on L/θ? A rephrasing
of the condition is the following definition.

Definition. An equivalence relation θ on a lattice L is a lattice congruence if whenever
x1 ≡θ y1 and x2 ≡θ y2, then x1 ∨ x2 ≡θ y1 ∨ y2 and x1 ∧ x2 ≡θ y1 ∧ y2.

Definition. An equivalence relation θ on a complete lattice L is a complete lattice con-
gruence if for all index sets I and maps i 7→ xi, i 7→ yi from I → L such that xi ≡θ yi for
all i, then we have ∧

i∈I

xi ≡θ
∧
i∈I

yi and
∨
i∈I

xi ≡θ
∨
i∈I

yi.

One might be worried that lattice congruences for infinite lattices could be pretty wild.
But the next lemma shows that things aren’t as bad as they could be.

Lemma. Let L be a complete lattice, θ a complete lattice congruence, and X an equivalence
class of θ. Then

X =
[∧

X,
∨

X
]

=
{
z ∈ L |

∧
X ≤ z ≤

∨
X
}
.

Proof. If z ∈ X, then by definition
∧
X ≤ z ≤

∨
X. Conversely, note that since θ is a

complete lattice congruence,
∧
X ≡θ

∨
X ∈ X, since for any y ∈ X, if we index X by I,

then we have maps i 7→ xi, i 7→ y, and so
∧
i∈I xi ≡θ

∧
i∈I y = y and

∨
i∈I xi ≡θ

∨
i∈I y = y.

Thus if z ∈ [
∧
X,
∨
X], then z ∧

∧
X =

∧
X and so z ≥L/θ

∧
X, and similarly z ≤L/θ

∨
X.

Thus
∨
X ≡θ

∧
X ≡θ z. �

This leads to the following sometimes-used notation.

Definition. For x ∈ L, πθ↓(x) is the bottom element of the equivalence class of x, and πθ↑(x)
is the top element.

How can we understand congruences better? Let |L| <∞ for the rest of class, since finite
lattices are hard enough. Then a congruence θ is determined by the set of covers x l y in
the Hasse diagram for which x ≡θ y. This is because if we have any z ≡θ w, then we also
have z ≡θ z ∨ w ≡θ w, and have a finite path of covers going up from z to z ∨ w, then back
down to w (and all of these covers are equivalent in θ by the lemma).
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Example. With S3 mapping to the Tamari lattice, we have that the two nodes corresponding
to 312 and 132 are combined in an equivalence class, and every other equivalence class is a
singleton.

•
• •

• •
•

•
•

•
•

•

Let Covers(L) := {(x, y) | xl y}. Day13 characterized for which E ⊂ Covers(L) there is a
lattice congruence collapsing exactly E.

Theorem (Day). E ⊂ Covers(L) is the set of collapsed edges of a congruence if and only if
the following two conditions hold.

(1) If (x, y) ∈ E, z ∈ L, and x ∨ z ≤ x′ l y′ ≤ y ∨ z, then (x′, y′) ∈ E.
(2) If (x, y) ∈ E, z ∈ L, and x ∧ z ≤ x′ l y′ ≤ y ∧ z, then (x′, y′) ∈ E.

These conditions are definitely necessary by the lemma from earlier. Before we get into
the proof, let’s look at some examples.

Example. If we try E = {(132, 312)} in Covers(S3), then for any z ∈ S3, either x ∨ z =
y ∨ z ∈ {312, 321}, or x ∨ z = x and y ∨ z = y. A similar statement follows for meets, and
so Day’s conditions don’t give any new covers and this is the collapsed set of edges for a
congruence.

•
• y

• x

•

Example. If we try E = {(x = 123, y = 213)}, then choosing z = 132 gives z ∨ y = 321
but z ∨ x = z, so this forces two new covers (132, 312), (312, 321) ∈ E. A similar argument
shows that this now implies (213, 231) ∈ E. Thus the minimal lattice congruence we get has
only two equivalence classes.

•

• •

y z

x

13Alan Day, Characterizations of finite lattices that are bounded-homomorphic images of sublattices of
free lattices. Canadian J. Math. 31 (1979), no. 1, 69–78, Lemma 3.2.
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Some side comments: for any lattice L, the set of lattice congruences is a poset via θ1 ≤ θ2

if x ≡θ1 y implies x ≡θ2 y. In fact, this is also a lattice! And even better, it’s distributive,
i.e. θ1 ∨ (θ2 ∧ θ3) = (θ1 ∨ θ2) ∧ (θ1 ∨ θ3) and (θ1 ∨ θ2) ∧ θ3 = (θ1 ∧ θ3) ∨ (θ2 ∧ θ3).

Now onto the proof! We’ll write =⇒ for the transitive closure of Day’s conditions on
Covers(L).

Proof. Let E ⊂ Covers(L) such that (x, y) ∈ E and (x, y) =⇒ (x′, y′) means (x′, y′) ∈ E
(i.e. E satisfies Day’s conditions). We’ll show there exists a lattice congruence θ such that
E = {(x, y) ∈ Covers(L) | x ≡θ y}. Try θ the equivalence relation generated by covers in E,
i.e. θ generated by x ≡ y for (x, y) ∈ E. We want to show

• that θ is a lattice congruence; and
• that θ doesn’t collapse extra edges, i.e. (x, y) /∈ E means x 6≡θ y.

First we prove the first bullet. Let x ≡θ x′ and y ≡θ y′. We want to show that x ∨ y ≡θ
x′ ∨ y′, and that x ∧ y ≡θ x′ ∧ y′.

Let x = x0 − x1 − . . . − xm = x′, where (xi, xi+1) or (xi+1, xi) ∈ E for each i. Similarly,
let y = y0 − y1 − . . .− yn = y′, where (yj, yj+1) or (yj+1, yj) in E for each j. We’ll show by
induction on i+ j that x0∨y0 ≡ xi∨yj. Really we just need to show that xi∨yj ≡ xi∨yj+1,
and WLOG assume yjlyj+1. Choose a chain x∨yj to x∨yj+1. Day’s condition 1 gives that
every edge in the chain is in E, so we’re done. The picture to have in mind is below: the
squiggly lines come from paths of edges in E, and of course (yj, yj+1) ∈ E. Day’s condition
gives us that the dotted line is a path in E

x ∨ yj+1

x ∨ yj yj+1

x yj
E

Next we prove the second bullet. Suppose we have xl x′, and an E-chain x = x0 − x1 −
. . . − xn = x′. By joining everything in the chain with x, we can get a new collection of
monotone paths in E connecting each xi ∨ x with xi+1 ∨ x,

x = x0 ∨ x x1 ∨ x · · · xn ∨ x.

Since each xi ∨ x ≥ x, the E chain is entirely ≥ x. Repeat this trick to each entry of the
chain by meeting with x′ to get a chain where every element is ≥ x and ≤ x′. So every link
of the chain is x or x′, and in particular (x, x′) ∈ E. �

October 28 – Join Irreducibles

Recall the theorem of Day from last time:

Theorem (Day). E ⊂ Covers(L) is the set of collapsed edges of a congruence if and only if
the following two conditions hold.

(1) If (x, y) ∈ E, z ∈ L, and x ∨ z ≤ x′ l y′ ≤ y ∨ z, then (x′, y′) ∈ E.
(2) If (x, y) ∈ E, z ∈ L, and x ∧ z ≤ x′ l y′ ≤ y ∧ z, then (x′, y′) ∈ E.
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One way we can form such a set E ⊂ Covers(L) is by a cover xl y, and seeing what other
covers must be in E because of this (in other words, we take the smallest set E that contains
(x, y) and satisfies the conditions of the theorem). If we have x ∨ z ≤ x′ l y′ ≤ y ∨ z for
some z, x′, y′ ∈ L, then we must also have (x′, y′) ∈ E. We say that the cover (x, y) forces
(x′, y′). We write (x, y) =⇒ (x′, y′) if (x, y) forces (x′, y′).

Example. Here is the complete list of forcing relations for S3 (together with the Hasse
diagram of S3, as a reminder).

321

231 312

213 132

123

(123, 213) ks +3 (312, 321)

�� #+

(231, 321)

��s{

(123, 213)+3ks

(213, 231) (132, 312)

Note that the relation of forcing gives a preorder (reflexive and transitive relation) on the
set of covers. The preorder is not antisymmetric (which can be seen in the above diagram),
so it is not a partial order. But it is an easy exercise to prove that a preorder � induces a
partial order on the set of equivalence classes defined by a ∼ b ⇐⇒ a � b and b � a.

Now, we see that we have reduced the problem of finding lattice congruence relations to
finding downward closed sets in this partial order on the equivalence classes. We want to
take these equivalence classes and be able to pick out a canonical cover, and to do that, we
introduce the notion of a complete join irreducible element. Each join irreducible element
will give us a covering pair. Here is the previous example of the forcing preorder of S3, with
the join irreducible covers indicated:

(123, 213) ks +3 (312, 321)

�� "*

(231, 321)

��t|

(123,213)+3ks

(213, 231) (132, 312)

Lemma. Let L be a complete lattice. For j ∈ L, the following are equivalent

(1) j =
∨
X =⇒ j ∈ X

(2) j >
∨
{x ∈ L|x < j}

(3) j covers exactly one element, j∗ and when x < j, we have x ≤ j∗
(4) (If L is finite) j 6= 0̂ and j = x ∨ y =⇒ j = x or j = y
(5) (If L is finite) j covers exactly one element

Definition. An element j ∈ L, where L is a complete lattice, is called complete join
irreducible if it satisfies any and all of the first three conditions above. An element is
called join irreducible if it satisfies (4), but this notion is not very useful in general. We
sometime abbreviate complete join irreducible by cji .

There is a dual notion of complete meet irreducible elements, defined in the analogous
way, that we will not be needing at the moment.

Example. For S3, using the Hasse Diagram, it is easy to see which elements are complete
join irreducible, using condition (5) from the lemma. We just need to see which elements
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cover exactly one element:

321

231 312

213 132

123

Looking back the forcing diagram for S3, note that each forcing equivalence class has
exactly one cji pair (j∗, j) in it (but this uniqueness is not true in general!):

This suggests that maybe cji pairs could be in every forcing equivalence class, but before
we get to that, we should prove this lemma.

Proof. (1) =⇒ (2): If (2) is false, then j =
∨
{x ∈ L|x < j}, and j is not in this set, which

implies that (1) is false.
(2) =⇒ (3): Let j∗ =

∨
{x ∈ L|x < j} < j. Note that j covers j∗, since j∗ < x < j

implies x ∈ {x ∈ L|x < j}, so x ≤ j∗. If j covers y, we have y < j, so y ∈ {x ∈ L|x < j}, so
y ≤ j, so y = j∗. And if x < j, then x ∈ {x ∈ L|x < j}, so x ≤ j∗.

(3) =⇒ (1): Suppose (1) is not true. Then we have some X with
∨
X = j, and j is not

in X. Note that x < j for all x ∈ X, so x ≤ j∗ for all x ∈ X, so
∨
X ≤ j∗ < j, contradicting

(3).
(1) =⇒ (4) Note that x ∨ y =

∨
{x, y}, so if x ∨ y = j, then

∨
x, y = j, so j ∈ {x, y}.

(4) =⇒ (5) (assuming L is finite): Let j∗ =
∨
{x ∈ L|x < j}. By repeated use of (4), we

see that j∗ < j. By the same reasoning as in (2) =⇒ (3), we have that j covers only j∗.
(5) =⇒ (3)(assuming L is finite): We already have most of (3), we just need to show

that if x < j, then x ≤ j∗. Take a chain x = x1 l x2 l · · · l xm−1 l xm = j. Such a chain
exists because L is finite. Now, j only covers one element, j∗, so we must have xm−1 = j∗.
and then x = x1 l x2 l · · ·l xm−1 = j∗ implies that x ≤ j∗. �

Now, there is one standard result concerning cji elements in a lattice:

Lemma. Let L be a finite lattice. Then for x ∈ L, x =
∨
{j ∈ L|j is cji and j ≤ x}

Proof. The proof is by induction. If x = 0̂, then there are no cji elements less than it, so∨
{j ∈ L|j is cji and j ≤ x} =

∨
∅ = 0̂. If x is cji, then of course we have x = x =

∨
{j ∈

L|j is cji and j ≤ x}, since x ∈ x = {j ∈ L|j is cji and j ≤ x}.
Now, if x is not cji, it covers at least two things, say yilx for i ∈ {1, 2, . . . , k}, k ≥ 2. Now,

yi = x =
∨
{j ∈ L|j is cji and j ≤ yi} by the inductive hypothesis, and we have x = y1 ∨

· · · ∨ yk = x =
∨
{j ∈ L|j is cji and j ≤ yi, for some i} = x =

∨
{j ∈ L|j is cji and j ≤ x},

since a cji element if less than x if and only if it is less than or equal to some element x
covers. �

Now, we can prove what was hinted at before:

Lemma. Let L be a finite lattice. If x l y, then there exists a cji element j ∈ L so that
(x, y) ⇐⇒ (j∗, j).

Proof. Let Z = {z ∈ L|z ≤ y, z � x}. Note that Z is nonempty, since y ∈ Z. Let j be the
minimal element of Z.
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I claim that j is cji. We know j 6= 0̂, since 0̂ ≤ x. With j = u ∨ v with j 6= u, v, then
u, v < j, which means u, v are not in Z. Thus, we must have u, v ≤ x (as u, v < j ≤ y), but
then j = u ∨ y ≤ x, which is not true. So j must be cji.

Next, I claim that j ∨ x = y and j ∧ x = j∗. Note that j ∨ x ≤ y, and j ∨ x > x (since
j ∨ x = x =⇒ j ≤ x). But xl y, so j ∨ x = y. Similarly, j ∧ x ≥ j∗, since j∗ is not in Z,
and j∗ ≤ j ∧ x since j∗ ≤ x, j. Thus, j∗ = j ∧ x.

Now, we have xly =⇒ j∧x = j∗l j = j∧y. And also jl j =⇒ x∨ j∗ = xly = x∨ j.
Thus (x, y) ⇐⇒ (j∗, j). �

In fact, we have proved something better than this. For two covers (x1, y1) and (x2, y2),
we say that (x1, y1) slides to (x2, y2) if y1 = x1 ∨ y2 and x2 = x1 ∧ y2. We write (x1, y1) 
(x2, y2). It is clear that is a partial order and that, if (x1, y1) (x2, y2) then (x1, y1) ⇐⇒
(x2, y2). So we have actually shown that, for all covers (x, y), there is a join irreducible
element j with (x, y)  (j∗, j) and, similarly, there is a meet irreducible element m with
(m,m∗) (x, y).

We define two covers to be slide equivalent if we can get from one to the other by repeatedly
sliding up and down.

October 30 and November 1 – Behavior of covers under quotients

On these days, we worked through a sequence of lemmas in IBL style concerning the
relation between Covers(L) and Covers(L′) for a lattice surjection π : L→ L′.

Defnitions: Let L be a finite lattice. We define Covers(L) to be {(x, y) ∈ L2 : xly}. We
have natural inclusions JIrr(L) and MIrr(L) ↪→ Covers(L) by j 7→ (j∗, j) and m 7→ (m,m∗)
respectively, and we will often abuse notation and think of JIrr(L) and MIrr(L) as subsets
of Covers(L).

We define a binary relation =⇒ called forcing on Covers(L) to be the transitive closure
of the following conditions:

• If x1 l y1 and x1 ∨ z ≤ x2 l y2 ≤ y1 ∨ z then (x1, y1) =⇒ (x2, y2).
• If x1 l y1 and x1 ∧ z ≤ x2 l y2 ≤ y1 ∧ z then (x1, y1) =⇒ (x2, y2).

We define (x1, y1) and (x2, y2) ∈ Covers(L) to be forcing equivalent if (x1, y1)⇐⇒ (x2, y2).
For (x1, y1) and (x2, y2), we say that (x1, y1) slides to (x2, y2) if x1∨y2 = y1 and x1∧y2 =

x2. We write (x1, y1) (x2, y2). Define (x1, y1) and (x2, y2) to be slide equivalent if they
are linked by a chain of slides and reverse slides. So slide equivalent elements are forcing
equivalent, but perhaps not vice versa.

Let L and L′ be finite lattices and π : L → L′ a lattice surjection. Let E be the set of
(x, y) ∈ Covers(L) with π(x) = π(y).

Problem 1: Suppose that x and y ∈ L with xly and π(x) 6= π(y). Show that π(x)lπ(y).
Thus, π induces a map π∗ : Covers(L) \ E → Covers(L′) with π∗(x, y) = (π(x), π(y)).

Proof. Suppose to the contrary that π(x) < z′ < π(y). Lift z′ to z in L. We know that
x ≤ y∧ (x∨ z) ≤ y, so either y∧ (x∨ z) = x or y∧ (x∨ z) = y since xl y. Next, notice that

π(y ∧ (x ∨ z)) = π(y) ∧ (π(x) ∨ π(z)) = π(y) ∧ (π(x) ∨ z′) = π(y) ∧ z′ = z′.

Therefore, we know that z′ = π(y ∧ (x ∨ z)) = π(x) or π(y), which is a contradiction, as we
initially claimed that π(x) < z′ < π(y). Thus, we can conclude that π(x)l π(y). �
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Problem 2: Let x′ ≤ y′ in L′. Show that we can find x and y ∈ L with x ≤ y, π(x) = x′

and π(y) = y′.

Proof. Let u and v ∈ L be lifts of x′ and y′ ∈ L′ respectively. Let x = u ∧ v and y = u ∨ v.
Then x ≤ y, We have π(x) = π(u ∧ v) = x′ ∧ y′ = x′ and π(y) = π(u ∨ v) = x′ ∨ y′ = y′. �

Problem 3: Let x′ l y′ in L′. Show that we can find x and y ∈ L with xl y, π(x) = x′

and π(y) = y′.
In other words, Problem 3 shows that π∗ is surjective.

Proof. Note that since x′ l y′, we have x′ ≤ y′, so by problem 2, we can find x, y ∈ L with
π(x) = x′, π(y) = y′ and x < y (since π(x) = x′ < y′ = π(y), the inequality must be strict).
Now fix a path of covers from x to y. Since π(x) = x′ l y′ = π(y), everything on the path
must map to one of x′, y′ under π, and there must be a cover x0 l y0 with π(x0) = x′ and
π(y0) = y′. Hence, (x0, y0) is the desired cover in L. �

Problem 4: Suppose that (x1, y1) and (x2, y2) ∈ Covers(L) \E. Show that, if (x1, y1) 
(x2, y2) then (π(x1), π(y1))  (π(x2), π(y2)). Conclude that π∗ descends to a well defined
map from Covers(L) \ E modulo slide equivalence to Covers(L′) modulo slide equivalence.

Proof. Since (x1, y1)  (x2, y2), x1 ∨ y2 = y1 and x1 ∧ y2 = x2. Then since π is a lattice
homomorphism, π(x1)∨π(y2) = π(y1) and π(x1)∧π(y2) = π(x2). We also know from Problem
1 that π(x1)lπ(y1) and π(x2)lπ(y2), so this does give a slide (π(x1), π(y1)) (π(x2), π(y2)).

To infer that π∗ is thus a well-defined map as required, it remains only to show that a chain
of slides and reverse slides defining a slide equivalence between two covers in Covers(L)\E
cannot pass through a cover in E (and thus descends to a chain of slides in Covers(L′).) If we
had a slide (x1, y1) (x2, y2) with (x2, y2) ∈ E, then (x2, y2) forces (x1, y1) since x1 = x2∨x1

and y1 = y2 ∨ x1. This implies (x1, y1) ∈ E, a contradiction. The same issue occurs with
meet instead of join if (x1, y1) ∈ E. �

Problem 5: Suppose that (x1, y1) and (x2, y2) ∈ Covers(L) \ E with π(x1) = π(x2) and
π(y1) = π(y2). In this problem, you will show that (x1, y1) and (x2, y2) are slide equivalent.

(a) Suppose that y1 ≥ y2. Show that x1 ≥ x2. Show furthermore that, in this case,
(x1, y1) (x2, y2).

(b) Now assume only that (x1, y1) and (x2, y2) ∈ Covers(L) \ E with π(x1) = π(x2) and
π(y1) = π(y2). Show that (x1, y1) and (x2, y2) are slide equivalent.

Proof. Suppose that (x1, y1) and (x2, y2) ∈ Covers(L) \ E with x′ := π(x1) = π(x2) and
y′ := π(y1) = π(y2). We wish to show that (x1, y1) and (x2, y2) are slide equivalent.

(a) Suppose that y1 ≥ y2. We claim that x1 ≥ x2. To see this, note that x1 ≤ x1 ∨ x2 ≤
y1 ∨ y2 = y1, so since (x1, y1) is a cover, either x1 ∨ x2 = x1 or x1 ∨ x2 = y1. But since
(x1, y1) /∈ E, we have π(x1 ∨ x2) = π(x1) ∨ π(x2) = x′ < y′ = π(y1), so that x1 ∨ x2 = x1.
Thus x1 ≥ x2.

Moreover, in this case, we have that x1 ≤ x1 ∨ y2 ≤ y1, so since (x1, y1) is a cover,
x1 ∨ y2{x1, y1}. Since π(x1 ∨ y2) = π(x1) ∨ π(y2) = x′ ∨ y′ = y′ 6= π(x1), we must have
x1 ∨ y2 = y1.

Similarly, note that x2 ≤ x1 ∧ y2 ≤ y2, so since (x2, y2) is a cover, x1 ∧ y2 ∈ {x2, y2}. Since
π(x1∧y2) = π(x1)∧π(y2) = x′∧y′ = x′ 6= π(y2), we must have x1∧y2 = x1. Thus if y1 ≥ y2,
then (x1, y1) slides to (x2, y2).
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(b) We claim that without the hypothesis that y1 ≤ y2, (x1, y1) and (x2, y2) are still slide
equivalent. To see this, let

x1 ∧ x2 = z0 l z1 l · · ·l zm = y1 ∧ y2

be a chain of covers connecting x1 ∧ x2 to y1 ∧ y2. Note that since

x′ = π(z0) ≤ π(z1) ≤ · · · ≤ π(zm) = y′,

there exists some k ∈ {1, · · · ,m} such that π(zi) = x′ for all i < k and π(zi) = y′ for all
i ≥ k. Moreover, note that since zk ≤ y1 ∧ y2 ≤ y1, we have that y1 ≥ zk and y2 ≥ zk. Thus
the cover (zk−1, zk) satisfies the hypotheses of (a), so it is slide equivalent to both (x1, y1)
and (x2, y2). It follows that (x1, y1) and (x2, y2) are slide equivalent. �

Problem 6: Suppose that (x′1, y
′
1) and (x′2, y

′
2) ∈ Covers(L) and (x′1, y

′
1) (x′2, y

′
2). In this

problem, we will show that we can lift x′1, y′1, x′2, y′2 to x1, y1, x2, y2 with (x1, y1) (x2, y2).

(a) Show that we can lift x′1, y′1, x′2, y′2 to x1, y1, x2, y2 with x1l y1, x2l y2 and y1 ≥ y2.
(b) Show that, if we choose lifts as in part (a), we will also have x1 ≥ x2 and (x1, y1) 

(x2, y2).

Proof. (a) By problem 3, we can lift the covers (x′1, y
′
1) and (x′2, y

′
2) of L′ to covers (x1, y1)

and (x2, y2) of L. Define y = y1 ∨ y2, and x = x1 ∨ x2. Then note that π(y) = π(y1 ∨ y2) =
y′1 ∨ y′2 = y′1, where the last equality comes from the fact that y′1 = x′1 ∨ y′2 because (x′1, y1, )
slides to (x′2, y

′
2). Similarly, π(x) = π(x1 ∨ x2) = x′1 ∨ x′2 = x′1, where the last equality comes

from the fact that x′1 ∨ y′2 = x′2.
We do not necessarily have that (x, y) is a cover, but we can find a chain x = z0 l z1 l
· · ·l zk = y. Since π(x) = x′1, and π(y) = y′1, and x′1 l y′1, we must have some index where
π(zi) = x′1 and π(zi+1) = y′1.

We claim that y2 ≤ zi+1. This is true because zi+1 ≥ x1∨x2 ≥ x2, and so x2 ≤ zi+1∧ y2 ≤
y2. Since (x2, y2) is a cover, zi+1 ∧ y2 = y2 or zi+1 ∧ y2 = x2. But π(zi+1 ∧ y2) = y′1 ∧ y′2 = y′2,
so zi+1 ∧ y2 = y2, so y2 ≤ zi+1.

We can replace (x1, y1) with (zi, zi+1) to get the desired properties: (zi, zi+1) is a cover,
π(zi) = x′1, π(zi+1) = y′1, and zi+1 ≥ y2 as described above.

(b) From part (a) we can assume we have lifted (x′1, y
′
1) and (x′2, y

′
2) to covers (x1, y1) and

(x2, y2) so that y1 ≥ y2. Now we want to tweak things to have x1 ≥ x2. Consider y2 ∧ x1.
Note that π(y2∧x1) = y′2∧x′1 = x′2. Now, consider a chain y2∧x1 = z0l · · ·lzk = y2. Since
π(y2) = y′2 and π(y2 ∧ x1) = x′2, we must have some i where π(zi) = x′2 and π(zi+1) = y′2.

I claim that zi ≤ x1. Note zi ≤ zk = y2 ≤ y1, and so x1 ≤ zi ∨ x1 ≤ y1. Since (x1, y1) is a
cover, we must have zi ∨ x1 = x1 or zi ∨ x1 = y1. But note π(zi ∨ x1) = x′2 ∨ x′1 = x1 which
means that we need zi ∨ x1 = x1, or zi ≤ x1.

Now we can replace (x2, y2) with (zi, zi+1) to get the desired properties: (zi, zi+1 is a cover,
π(zi) = x′2, π(zi+1) = y′2, zi+1 ≤ y2 ≤ y1, and zi ≤ x1. �

Combining Problems 5 and 6, π∗ is a bijection from Covers(L)\E modulo slide equivalence
to Covers(L′) modulo slide equivalence.

Problem 7: Suppose that (x1, y1) and (x2, y2) ∈ Covers(L)\E. Show that, if (x1, y1) =⇒
(x2, y2) then (π(x1), π(y1)) =⇒ (π(x2), π(y2)).

Proof. We know there exists some z ∈ L such that (without loss of generality, up to turning
over the ∨’s) x1 ∨ z ≤ x2 l y2 ≤ y1 ∨ z. Then since π is a lattice homomorphism, we have

π(x1) ∨ π(z) ≤ π(x2)l π(y2) ≤ π(y1) ∨ π(z)
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which shows that (π(x1), π(y1))⇒ (π(x2), π(y2)). �

Problem 8: Suppose that (x1, y1) and (x2, y2) ∈ Covers(L)\E. Show that, if (π(x1), π(y1)) =⇒
(π(x2), π(y2)) then (x1, y1) =⇒ (x2, y2).

In other words, the forcing preorder on Covers(L′)/( equivalence) is precisely the pre-
order induced on Covers(L′)/( equivalence). considered as a subset of (Covers(L)\E)/( equivalence).

Proof. We prove the contrapositive. Suppose that (x1, y1) does not force (x2, y2). Let E ′

be the set of covers forced by (x1, y1). Then E ∪ E ′ is closed under forcing. Let L′′ be the
quotient of L by E ∪ E ′. Since L → L′′ collapses E, the map p : L → L′′ factors through
π : L → L′ as a map of sets. Let π′ : L′ → L′′ be the induced map. We claim that π′ is
a lattice map. Indeed, let x′ and y′ ∈ L′ and lift them to x and y ∈ L. Then π′(x′ ∧ y′) =
π′(π(x)∧π(y)) = π′(π(x∧y)) = p(x∧y) = p(x)∧p(y) = π′(π(x))∧π′(π(y)) = π′(x′)∧π′(y′)
using that p and π are maps of lattices and p = π′ ◦ π. The argument for ∨ is similar.

So π′ is a lattice homorphism which contracts (π(x1), π(y1)) and not (π(x2), π(y2)), and
thus (π(x1), π(y1)) does not force (π(x2), π(y2)). �

November 4 – Congruence uniform lattices and doubling, part 1

Our big goal is to understand quotients of lattices. Our starting point was a result of Day

Theorem. (Day) A lattice quotient is determined by which covers it contracts. The con-
tractible sets E are sets closed under the forcing relation, =⇒.

The forcing relation is hard to deal with. We introduced a more convenient relation,
sliding, which puts a partial order on Covers(L). We showed that, for every cover (x, y),
there is at least one join irreducible j and at least one meet irreducible m with (m,m∗)  
(x, y) (j∗, j). We now want to study the cases where this j and m are unique. We could
ask for two things:

Definition. (Stronger) A lattice L is congruence uniform or CU if every ⇔ equivalence
class has exactly one (j∗, j) pair and exactly one pair (m,m∗) pair.

Definition. (Weaker) A lattice has good  equivalence representatives if each slide
equivalence class has a unique (j∗, j) and a unique (m,m∗) cover.

We will show having good  equivalence representatives is equivalent to a very different
sounding condition, semi-distributivity.

Today, we focus on congruence uniformity. Here is the main result we are heading for:

Theorem. (Day14) A finite lattice L is CU iff it can be produced from the trivial lattice by
a sequence of interval doublings, i.e there exists L ∼= LN � LN−1 � · · ·� L1 � L0 = {pt},
each Lk � Lk−1 is a doubling.

Of course, this means that we have to define doubling.
Let L′ be a lattice and let I ′ = [a′, b′] be an interval of L′.
As a set, we define the doubling L′[I ′] to be (L′ − I ′) t (I ′ × {0, 1}). Let π : L′[I ′] :→ L′

be the obvious projection. For x and y ∈ L′[I ′], let x ≤ y if:

(1) π(x) ≤ π(y).
(2) If x = (π(x), i) and y = (π(y), j) are in I ′ × {0, 1}, we also require that i ≤ j.

14Alan Day, “Characterizations of finite lattices that are bounded-homomorphic images of sub- lattices
of free lattices”, Canad. J. Math. 31 (1979), no. 1, 69–78, Corollary 5.4.
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The following claims will appear on homework:

(1) L′[I ′] is a lattice.
(2) π : L′[I ′]→ L′ is a lattice quotient.
(3) The collapsed edges of π are precisely (x, 0) l (x, 1). Exactly one of these is join

irreducible, namely, (a′, 0)l (a′, 1). Exactly one of these is meet irreducible, (b′, 0)l
(b′, 1), where I ′ = [a′, b′].

Let’s verify that the doubling of a CU lattice is CU, thus checking the easy part of Day’s
result. From our worksheets on the behavior of forcing under lattice quotients, The forcing
equivalence classes of L′[I ′] are {(x, 0)l (x, 1)} and π−1

∗ of forcing classes of L′. Clearly, the
former class has unique (j∗, j) and unique (m,m∗) covers. We need to check that the latter
does as well.

In other words, let C ′ be a forcing equivalence class of L′ containing a unique (j′∗, j
′) and a

unique (m′, (m′)∗). Let C = π−1(C ′). We need to check that there is a unique join irreducible
cover in C.

Let j0 be the bottom element of π−1(j′). We claim that

(1) (j′∗, j
′) lifts to a (k, j0) cover.

(2) j0 is join irreducible.
(3) No other (j∗, j) lift exists.

Proof. Proof of (2): Suppose for the sake of contradiction, j0 = x ∨ y, x, y ≤ j0. Note that
π(x) 6= π(y), as otherwise π(j0) = π(x)∨π(y) would be π(x) < π(j0). So π(j0) = π(x)∨π(y)
and π(x), π(y) < π(j0), which is a contradiction.

Proof of (1): Lift (j′∗, j
′) to j2 < j1, replace by j0 ∧ j2 < j0 ∧ j1 = j0. Take chain of covers

j0 ∧ j2 l · · ·l j0

j0 ∧ j2 maps to j′∗, and j0 maps to j′. By minimality of j0, the last cover in the chain is the
desired one.

Proof of (3): If (x, y) is another lift, then y ≥ x, j0. So j0∨x = x or y. Since π(x) = j′∗ < j′,
so j0 ∨ x 6= x, so j0 ∨ x = y. So y is not join irreducible. �

So doubling preserves the property of being CU and we have the easy direction of Day’s
result. Next time, we prove the hard part.

November 6 – Congruence uniform lattices and doubling, part 2

Let L be a finite lattice. We now want to show that, if L is congruence uniform, then L is
obtained from the trivial lattice by a sequence of doublings. We repeat that L is defined to
be congruence uniform (CU) if every forcing equivalence has a unique join irreducible cover
and a unique meet irreducible cover. Since forcing equivalence is defined as the equivalence
classes of the forcing preorder, we can totally order the forcing equivalence classes as C1, C2,
. . . , CN such that, if Ci =⇒ Cj then i ≤ j. Then we have a sequence of quotients

L� L/CN � L/(CN ∪ CN−1)� · · ·� L/(C1 ∪ C2 ∪ · · · ∪ CN) ∼= {0}.

By our results on forcing and slide equivalence under quotients, each step Lk+1 � Lk in
this chain collapses a single forcing equivalence class of Lk+1 and that class has a unique
join irreducible cover and a unique meet irreducible cover. Thus we are reduced to studying
the situation that π : L→ L′ is a lattice surjection collapsing a single join irreducible cover
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(j∗, j) and a single meet irreducible cover (m,m∗). We want to show that L ∼= L′[I ′] for
some interval I ′ of L′; then Day’s result will follow.

Let E be the set of covers collapsed by π. We first want:

Lemma. Each x ∈ L is adjacent to at most one edge e in E.

Proof. We must rule out the following three cases:
Case 1 There is an element x with two covers xly1 and xly2 in E. Then y1 = x∨j = y2.
Case 2 There is an element y with two covers x1ly and x1ly in E. Then x1 = y∧m = x2.
Case 3 There are covers x l y l z in E. Then the relations (m,m∗)  (y, z) and

(x, y) (j∗, j) imply that m ≥ y ≥ j, but this contradicts that (m,m∗) (j∗, j). �

So each fiber of π has either 1 or 2 elements.
Let I ′ = [π(j), π(m)]. We will be showing that L ∼= L′[I ′] (and the map L → L′ is the

standard map L′[I ′]→ L′.
We start by showing that π is 2 to 1 above [π(j), π(m)] and 1 to 1 everywhere else. For the

first claim, suppose that π(j) ≤ x′ ≤ π(m) and π−1(x′) is the singleton {x}. Thenm ≥ x ≥ j,
contradicting that (m,m∗)  (j, j∗). For the second claim,If π(x) = π(y) with x l y, then
(m,m∗) (x, y) (j∗, j) so m ≥ x and y ≥ j, and we get π(m) ≥ π(y) = π(x) ≥ π(j).

We next claim that the order of L on π−1(I ′) is I ′ × {0, 1}. Let z′ ∈ I ′ and let z be an
arbitrary preimage of z. Put x = z∧m and y = z∨j. Then π(x) = π(z)∧π(m) = z′∧π(m) =
z′ and similarly π(y) = z′. Also, we have x 6= y since, if x = y, then m ≥ x = y ≥ j, a
contradiction. So we have constructed two distinct elements of π−1(z′) and we must have
π−1(z′) = {x, y}. Thus, one of the preimages of z is in [j∗,m] (namely, x) and the other is in
[j,m∗]. Call these preimages (z, 0) and (z, 1). We have thus made a bijection between π−1(I ′)
and I ′×{0, 1}; we claim this bijection is order preserving. Clearly, if (x, r) ≤ (y, s), we must
have π(x) ≤ π(y). I also claim we must have r ≤ s: Indeed, we cannot have (x, 1) ≤ (y, 0),
as m ≥ (y, 0) and (x, 1) ≥ j. Conversely, I claim that, if x′ ≤ y′ in I ′ and r ≤ s in {0, 1},
then (x, r) ≤ (y, s). If r = s = 0, take lifts x̃ ≤ ỹ. Then (x, 0) = m ∧ x̃ ≤ m ∧ ỹ = (y, 0).
The analogous argument works for r = s = 1. Finally, if r = 0 and s = 1, just notice that
(x, 0) ≤ (y, 0) < (y, 1).

It now remains to check that the induced order on the rest of L matches that on L′[I ′].
This is tedious but straightforward. Let x and y ∈ L and not both in π−1(I ′). If x ≤ y in
L then π(x) ≤ π(y) in L′ so x ≤ y in L′[I ′]. We now must assume that x ≤ y in L′[I ′] and
prove this inequality holds in L.

So, let x and y ∈ L and not both in π−1(I ′), with x ≤ y. Then π(x) ≤ π(y). We can
lift π(x) and π(y) to some x̃ and ỹ in L with x̃ ≤ ỹ. For the elements not in I ′, the lift is
unique. Thus, if x 6∈ I ′ and y 6∈ I ′, we must have x ≤ y.

Suppose now that x 6∈ I ′ but y = (y′, r) ∈ I ′. Then we have shown that x ≤ (y′, s) for
some s, but not necessarily the same one. Since (y′, 0) < (y′, 1), the only concern is that
we might have x ≤ (y′, 1) but x 6≤ (y′, 0). But then consider x2 := x ∧ (y, 0). We have
π(x2) = π(x) ∧ π(y, 0) = x′ ∧ y′ = x′, so x2 is a preimage of x′. Since x′ 6∈ I ′, we must have
x2 = x. But then x ≤ (y′, 0) as required. The case where x ∈ I ′ and y 6∈ I ′ is similar.

November 8 – Semidistributivity

Let L be a finite lattice. We said that L has good slide representatives if, for every
cover (x, y) there are unique j ∈ JIrr and m ∈ MIrr with (m,m∗) (x, y) (j∗, j). Today,
we are going to show that this is equivalent to a seemingly very different condition.
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We say that a lattice L is semidistributive (SD) if

(1) If x ∨ z1 = x ∨ z2 = y then x ∨ (z1 ∧ z2) = y and
(2) if y ∧ z1 = y ∧ z2 = x then y ∧ (z1 ∨ z2) = x.

Semidistributivity is a weakening of a more natural condition called distributivity: A
lattice is distributive if p∨ (q ∧ r) = (p∨ q)∧ (p∨ r) and p∧ (q ∨ r) = (p∧ q)∨ (p∧ r). In
fact, these two conditions are equivalent: If we assume the first, then we have

(p∧ q)∨ (p∧ r) = (p∧p)∨ (q∧p)∨ (p∧ r)∨ (q∧ r) = p∨ (q∧p)∨ (p∧ r)∨ (q∧ r) = p∨ (q∧ r)
since p ≥ p ∧ q, p ∧ r.

To see why distributivity implies semidistributivity note that, if L is distributive and
x∨z1 = x∨z2 = y then x∨ (z1∧z2) = (x∨z1)∧ (x∨z2) = y∧y = y, and the other condition
is similar.

Today’s main result is

Theorem. Let L be a finite lattice. Then L is SD iff it has good slide equivalent represen-
tatives.

In class I attributed this to Day, but that appears to be wrong. Rather, this seems to be
one of the results that experts knew for a long time, but where it isn’t clear who did it first.
The earliest reference I found is Free Lattices, by Freese, Jezek and Nation, Mathematical
Surveys and Monographs 1995 Volume 42, Chapter 2.5.

Let’s first show that, if L is semidistributive, then L has good slide represen-
tatives. Let (x, y) be a cover of L. Recall that, when we proved that (x, y) slides to a join
irreducible cover, we introduced the set Z := {z ∈ L : x ∧ z = y}. We showed then that, if
j is minimal in Z, then j is join irreducible and (x, y) (j∗, j).

It turns out that the converse also holds, and we will need this today. Indeed, suppose
that j is join irreducible and (x, y) (j∗, j). By the definition of sliding, j ∈ Z. Moreover,
if w < j then w ≤ j∗ so x ∧ w ≤ x ∧ j∗ = x < y, so we see that j is minimal in Z.

So our goal, is to show that Z has a unique minimal element, using the SD hypothesis.
Indeed, (half of) the definition of SD is precisely that Z is closed under meet, so

∧
Z ∈ Z

and is the unique minimal element. This shows that (x, y) slides to a unique join irreducible
cover, and we similarly show that (x, y) is slid to by a unique meet irreducible cover.

Now let’s show the converse: If L has good slide representatives, then L is SD.
Suppose that y ∧ z1 = y ∧ z2 = x; we want to show y ∧ (z1 ∨ z2) = x. We clearly have
y ∧ (z1 ∨ z2) ≥ x. If they are not equal, choose chain of covers: xl y′ l · · ·l y ∧ (z1 ∨ z2),
as depicted in figure 20.

We first claim that we have y′ � z1 and y′ � z2. Indeed, if y′ ≤ zj, then y′ is a lower
bound of y and zj, but y′ > x = y ∧ zj, a contradiction.

So x = y′ ∧ z1 = y′ ∧ z2. Our assumption of good slide representatives shows that
{z : y′ ∧ z = x} has a maximal element, and thus we must have y′ ∧ (z1 ∨ z2) = x. But
y′ ∧ (z1 ∨ z2) = y′, a contradiction. Λ

We close with a lemma we’ll want on Monday. This is taken from Nathan Reading,
“Lattice Theory of the Poset of Regions”, Chapter 9 of Lattice Theory: Special Topics and
Applications, Volume 2.

Lemma. (Monday’s lemma) Let L be finite lattice. Suppose that

(1) whenever w1, w2 m w1 ∧ w2 and x = y ∧ w1 = y ∧ w2, then x = y ∧ (w1 ∨ w2), and
(2) whenever w1, w2 l w1 ∨ w2 and x = y ∨ w1 = y ∨ w2, then x = y ∨ (w1 ∧ w2)
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z1 ∨ z2

y

z1 y ∧ (z1 ∨ z2) z2

y′

x = y ∧ z1 = y ∧ z2

Figure 20. Deducing semidistributivity from good slide representatives

Then l is SD.

w1 ∨ w2 y

w1 w2

w1 ∧ w2

x = y ∧ w1 = y ∧ w2

Figure 21. Condition (1) of the lemma

Proof. We will verify that, if y ∧ z1 = y ∧ z2 = x then y ∧ (z1 ∨ z2) = x. Our proof is by
induction on the distance from z1∧ z2 to 1̂. For the base case, if z1∧ z2 = 1̂ then z1 = z2 = 1̂
as well, and the statement is clear.

Let x = y ∧ z1 = y ∧ z2 and note that we also have x = y ∧ z1 ∧ z2. Choose chains from z1

down to z1 ∧ z2 and z2 down to z1 ∧ z2. Let w1 m z1 ∧ z2 and w2 m z1 ∧ z2 be the last step of
each chain. The next steps are depicted in Figure 22.

Our hypothesis is that y ∧ (w1 ∨w2) = x, since w1 and w2 cover w1 ∧w2. Also recall that
y ∧ z1 = x and y ∧ z2 = x.

We have z1 ∧ (w1 ∨ w2) ≥ w1 > z1 ∧ z2 so, inductively, we have y ∧ (z1 ∨ w1 ∨ w2) = x.
Similarly, y ∧ (z2 ∨w1 ∨w2) = x. Then (z1 ∨w1 ∨w2)∧ (z2 ∨w1 ∨w2) ≥ w1 ∨w2 > z1 ∧ z2 so
induction also gives y∧((z1∨w1∨w2)∨(z2∨w1∨w2)). But ((z1∨w1∨w2)∨(z2∨w1∨w2)) =
z1 ∨ z2 ∨ w1 ∨ w2 = z1 ∨ z2, so we have shown y ∧ (z1 ∨ z2) = x as desired. �

November 11 – Weak order is semidistributive

Today, we finally return to Coxeter groups! Our goal for today is to prove:
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z1 ∨ z2

z1 ∨ w1 ∨ w2 z2 ∨ w1 ∨ w2

w1 ∨ w2

z1 z2

w1 w2

z1 ∧ z2

Figure 22. Proof of lemma

Theorem. For W any Coxeter group and a ∈ W , the interval [e, a] is a semidistributive
lattice.

Remark. Once we have this, we’ll also know that this is true of any interval in the Coxeter
group, since sublattices of semidistributive lattices are semidistributive.

Remark. In fact, these intervals are also congruence uniform lattices, but this will take
longer to prove, and we’ll do it later.

Proof. It should come as no surprise that we’ll use a Björner-Edelman-Ziegler-style lemma
to prove this, as that’s how we showed these intervals are lattices in the first place, and we
also proved such a lemma at the end of the previous class. Recall:

Lemma. Suppose L is a lattice. Suppose that:

• whenever w1, w2 m w1 ∧ w2 and y ∧ w1 = y ∧ w2 = x, we have y ∧ (w1 ∨ w2) = x
• dually, whenever w1, w2lw1∨w2 and x∨w1 = x∨w2 = y, we have x∨ (w1∧w2) = y

Then L is semidistributive (i.e., the first hypothesis in each bullet point is unnecessary)

Let’s apply this to right order on a Coxeter group. We’ll just check the first bullet point
in the lemma, because the second is similar.

So suppose that w1, w2 m w1 ∧ w2. Then, letting D be the usual fundamental domain in
V ∨, the regions w1D and w2D are both separated from (w1 ∧ w2)D by single hyperplanes.
Looking at the hyperplane arrangement, we’re in a situation that looks roughly like this
(though perhaps with more than 4 hyperplanes):
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w1D w2D

Fix(t1) Fix(t2)

...
...

(w1 ∧ w2)D

(w1 ∨ w2)D

Let Fix(t1) and Fix(t2) be the hyperplanes separating w1D and w2D (respectively) from the
region (w1 ∧ w2)D.

We note first that w1 ∨ w2 actually exists in the interval [e, a], and is the same as in the
full lattice of L, because a is an upper bound for w1 and w2. This is good, because the
hypotheses of the lemma wouldn’t make sense otherwise.

Now consider y and x such that y ∧ w1 = y ∧ w2 = x. This additionally implies that
y ∧ (w1 ∧ w2) = x. We then have y ∧ (w1 ∨ w2) ≥ x, and we want to show that this is an
equality.

Suppose for a contradiction that it is not. Then choose some x′ with y∧(w1∨w2) ≥ x′mx,
and let Fix(t) be the hyperplane separating xD and x′D. We’ll now narrow down where this
hyperplane must be.

We know that x′ 6≤ w1∧w2, because if this inequality did hold, x′ would be a lower bound
of both y and w1 ∧ w2 greater than x, contradicting that y ∧ (w1 ∧ w2) = x. Thus there
is some reflection in W which is an inversion of x′, but not of w1 ∧ w2. However, we do
know that x ≤ w1 ∧ w2, and inv(x′) differs from inv(x) only by the addition of t; thus we
specifically have t /∈ inv(w1 ∧ w2).

On the other hand, we know that x′ ≤ w1 ∨w2. Thus t ∈ inv(w1 ∨w2). Between this and
the previous paragraph, we know (w1 ∧w2)D and (w1 ∨w2)D lie on opposite sides of Fix(t).
This is very limiting: it implies that Fix(t) must be one of the hyperplanes appearing in (or
implied by the ellipses in) the figure above.

Further, since x ≤ w1 ∧w2, xD lies on the same side of Fix(t1) and Fix(t2) as (w1 ∧w2)D.
In particular, it cannot have any of the hyperplanes in the diagram above as a border except
Fix(t1) and Fix(t2). Putting this together with the above, we then know Fix(t) is one of
these two hyperplanes; without loss of generality, t = t1.

Finally, knowing t = t1 gives us that

inv(x′) = inv(x) ∪ {t1} ⊂ inv(w1)

but this implies x′ ≤ w1 in weak order. Since x′ ≤ y as well, we have x′ ≤ y ∧ w1 = x, a
contradiction. �
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Now let’s return to looking at a couple of examples of weak order, paying particular
attention to the join-irreducible elements, slide equivalences, and forcing relations.

• Consider type I2(5). We label each slide equivalence class of covers by a number.
Join-irreducible elements are marked by squares.

1 2

5 8

4 7

3 6

2 1

Among the slide equivalence relations, the forcing relations are that 1 and 2 force
everything else.
• Consider type A3. As before, we consider its hyperplane arrangement in stereographic

projection. At every place where 3 planes meet, the Hasse diagram of the weak order
will contain a hexagon, shown on the left in the figure below. Within this hexagon
there will be two nontrivial slide equivalences, shown on the right.

e
s1s2

s2 s1 s1s2

s1s2s1

Looking at cover relations as segments of the hyperplane arrangement, we can capture
the fact that the two middle covers are not slide equivalent by breaking the hyperplane
they both lie on:
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e
s1s2

s2 s1 s1s2

s1s2s1

We illustrate the full breakdown of the A3 arrangement in this way. As before, we
mark the join-irreducible elements by squares:

α1
⊥

α2
⊥

α3
⊥

(α1+α2+α3)
⊥

(α1+α2)
⊥

(α2+α3)
⊥

We now segue into discussing one of the homework problems from last week, on counting
the number of join-irreducible elements in Sn, by looking at what join-irreducibility in Sn
means concretely in terms of permutations. Recall that a join irreducible element in right
weak order is an element with a unique right descent sk. Looking at permutations just
as rearranged sequences of numbers, for the permutation a1a2 · · · an to have unique right



34 POSET STRUCTURE OF COXETER GROUPS

descent sk is the same as saying that

a1 < a2 < · · · < ak > ak+1 < ak+2 < · · · < an

(which clarifies the use of the term “descent”). There are a couple of ways of counting
join-irreducibles.

First, we can fix a particular descent k and count how many join-irreducibles have that
descent. We can construct a permutation satisfying the inequalities above by choosing almost
any k elements and arranging them in order to make a1 < · · · < ak, while similarly placing
the remaining elements in order to make ak+1 < · · · < an. The only context in which this
fails is if we choose a1, . . . , ak to be 1, . . . , k, since then ak+1 cannot be less than ak. Since
every other choice works, this gives us

(
n
k

)
− 1 join-irreducibles with unique descent sk. The

total number of join-irreducibles is then

n∑
k=0

((
n

k

)
− 1

)
= 2n − (n+ 1).

We can also keep track of the pair of descending values (ak, ak+1) rather than the index
k. This pair of values tells us which hyperplane induces the cover associated to our join-
irreducible element. So how many permutations have left descent (j, i), with j > i? Such a
permutation is determined by, for every ` 6= j, i, a choice of whether it falls before or after
the pair j, i in our permutation. However, the inequalities we started with impose some
limitations: if ` > j, we cannot place it on the left side of j, and if ` < i, we cannot place it
on the right side of i. Thus a permutation with unique right descent given by the pair j > i
is defined by a choice of left or right for each ` between i and j. This gives 2j−i−1 different
options.

Looking at the above figure, in which we broke the A3 hyperplane arrangement into pieces
associated to slide equivalence classes, this explains why the number of pieces each plane
broke into was a power of 2. Because the weak order is semidistributive, there should be
exactly one join-irreducible in each slide equivalence class, so the number of pieces should be
the same as the number of join-irreducibles whose associated cover is induced by that plane.
We just calculated that to be a power of 2.

For example, consider the hyperplane Fix(1 3) = (α1 + α2)⊥. The join-irreducibles sep-
arated from their predecessors by this hyperplane are those whose unique descent is given
by 31, and following through our above reasoning such a join-irreducible is determined by
where we place 2, to get either 2314 or 3124. This corresponds to the plane (α1 +α3)⊥ being
broken into two pieces.

Next time, we’ll look at forcing relations in Coxeter groups systematically. After that, we’ll
consider some special quotients of weak order, and move on to strong order with whatever
time remains in the semester.

November 13 - Shards and Slide Equivalence

For a Coxeter Group W , we know that for any a ∈ W , L = [e, a] defines a lattice. The
goal of today is to understand and characterize slide equivalence classes of Coxeter Groups.

In all of our pictures, we have seen that, if (x1, y1) and (x2, y2) are slide equivalent, then
the same hyperplane separates x1D from y1D and separates x2D from y2D. We now prove
this in general.
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Proposition. Let W be a Coxeter Group. Choose a ∈ W , and let L = [e, a]. Choose
(x1, y1), (x2, y2) ∈ Covers(L), such that (x1, y1)  (x2, y2). Let y1 = t1x1 and y2 = t2x2.
Then, t1 = t2.

Proof. We have inv(yj) = inv(xj) ∪ {tj}. Since x1 ≥ x2 but x1 6≥ y2, we must have t2 6∈
inv(x1). But then, since y1 ≥ y2, we must have t2 ∈ inv(x1)∪{t1}. So t2 = t1, as desired. �

We now work towards our goal of characterizing slide equivalence classes of a Coxeter
Group. Nathan Reading’s theory of shards is meant to describe the slide equivalence
classes for some fixed reflection t ∈ T . This theory was originally laid out in Nathan
Reading, “Lattice congruences of the weak order”, (2004), but a much more readable source
(also by Reading) is Chapters 9 and 10 of Lattice Theory: Special Topics and Applications,
Volume 2. I have drawn heavily on the latter source in preparing these lectures.

Fix a reflection representation V of W with corresponding D0 6= 0. We then consider
a face inside the interior of the Tits Group with codimension 2. Such a face is stabilized
by a rank 2 subgroup, while the interior is stabilized by a finite group. The neighborhood
of the face looks like an I2(h) arrangement, and there is a canonical bottom region, which
contains D. We will call the hyperplanes bounding this bottom region the fundamental
hyperplanes .

For any two roots β and γ, we say that β⊥ cuts γ⊥ if β⊥ ∩ γ⊥ ∩ (Tits)◦ 6= ∅, and, in the
parabolic containing β and γ, the hyperplane β⊥ is fundamental and γ⊥ is not. In this case,
we call β⊥ ∩ γ⊥ a fracture of γ⊥.

Lemma. Let t ∈ T . The fractures of Fix(t) are precisely

{Fix(t) ∩ Fix(u) | Fix(t) ∩ Fix(u) ∩ Tits◦ 6= ∅, u ∈ inv(t), t 6= u}

Proof. Let F be a codimension 2 subspace of the Coxeter arrangement, chosen such that
F ⊂ Fix(t), and F ∩Tits◦ 6= ∅. This implies that Stab(F ) is a rank 2 parabolic, denoted P .
It is sufficient to show that Fix(t) is fundamental if and only if 6 ∃u ∈ inv(t) ∩ P that is not
t. To verify this, we provide a proof by picture:

The left case is where Fix(t) is fundamental, and the right case is where Fix(t) is not.
In the left case, it follows that reflecting over t does put D above any hyperplane of the
arrangement other than Fix(t), whereas, in the right case, reflecting over t places D above
other hyperplanes as well as Fix(t). �
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This result immediately yields the following useful corollary:

Corollary. Fix(t) has finitely many fractures.

The fractures form a hyperplane arrangement for Fix(t), and the reflections in this ar-
rangement with nontrivial intersection with Tits◦ are called Shards . We will write X(t) to
denote the set of shards of Fix(t), and X or X(W ) for the shards of

⊔
t∈T Fix(t).

Theorem. X is in bijection with the slide equivalence classes of W . In particular, (x1, y1) 
(x2, y2) if and only if they border along the same shard.

Proof. First, suppose that (x1, y1) and (x2, y2) border along the same shard of Fix(t). We
choose points p1 and p2 generically from x1D ∩ y1D and x2D ∩ y2D respectively, and look
at the line segment p1p2. A path from p1 → p2 crosses through subspaces which are of
codimension 2. This yields a sequence of covers: (x1, y1), (x2, y2) . . . (xN , yN) = (x2, y2) .

Shards are convex, implying that this path does not cross any hyperplane that cuts Fix(t).
In other words, this crosses no fractures of Fix(t). Thus, in every crossing, Fix(t) is funda-
mental. Therefore, in every crossing, either (xj, yj)  (xj+1, yj+1) or vice versa. We have
verified that the if two points border along the same shard, they are slide equivalent.

We now verify the converse case. It is enough to show that every shard borders a join
irreducible element. For a shard σ, Let j ∈ W be a minimal element above σ.

j

tj

σ

Where j covers tj. Suppose that j also covers tj. Then we have

j

tj t′j

Fix(t′) σ

This implies that Fix(t) is fundamental in Fix(t) ∩ Fix(t′), implying that tj borders σ, a
contradiction to minimality. �

November 15 – Congruence Uniformity, part 1

Our next big goal is to show that (intervals in) Coxeter groups are congruence uniform,
which means that the forcing relation on slide equivalence classes is acyclic. We now know
that slide equivalence classes are shards, but we don’t have a good understanding of forcing.
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As partial progress towards this goal, we will show that forcing is the transitive closure of a
more immediate relation we call cutting. To be honest, I still don’t feel that I have a good
understanding of forcing, but this will get us enough understanding to be able to prove the
CU property.

Recall that we said β⊥ cuts γ⊥ if β and γ lie in a finite rank two parabolic (equivalently,
β⊥ ∩ γ⊥ ∩ Tits◦ = ∅), with β fundamental and γ not fundamental:

ρ

γ⊥

β⊥

γ

β

We called β⊥ ∩ γ⊥ a fracture of γ⊥. Let β⊥ cut γ⊥ at fracture F , let σ be a shard of β⊥,
and let τ be a shard of γ⊥. We say σ cuts τ if (τ ∩ F )◦ ⊂ σ◦ and τ ∩ F is a codimension 1
face of the cone τ .

β⊥

γ⊥
σ

Fτ

Forcing is the transitive closure of cutting, as a preorder on X. Moreover, cutting is an
acyclic relation on X. Temporarily, let −→c denote the transitive closure of cutting, e.g.
σ −→c τ .

Choose x generating (τ ∩ F )◦, so that a neighborhood of x looks like a rank two interval
in the Coxeter group, with σ fundamental and τ non-fundamental.

We claim that if σ cuts τ , then σ forces τ .
To see this, let x be the bottom element of the interval, let ym x be labelled by σ, and let

z be the other cover of x. We have two cases:

(1) If τ is in the chain above z, then τ labels a cover in a chain from x ∨ z = z to y ∨ z,
so σ ⇒ τ .

σ

σ
x

yz

y ∨ z

τ
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(2) Suppose instead that τ is in the chain above y. Let y ≤ y′ l y ∨ z, z ≤ z′ l y ∨ z,
with τ labeling a cover in [y, y′]. Then σ labels z′ l y′ ∨ z =: x′ and τ labels an edge
in a chain from z′ ∧ y′ to x′ ∧ y′.

σ

σ
x

yz

y′z′

x′

τ

We now wish to prove the converse, namely that =⇒ implies −→c.

Lemma. Let u ≤ v in W , and take two chains

u = x0 l x1 l · · ·l xN = v,

u = y0 l y1 l · · ·l yN = v.

Then the −→c closure of {(xj, xj+1)} is the same as of {(yj, yj+1)}.

Proof. By a lemma from homework, it is enough to consider the case when the path differ
by a single braid move, i.e. the paths correspond to opposite sides of a rank two interval.
The first and last cover of the interval cut or equal all the shards on the other side of the
interval. �

The rest of the proof was badly done, so we stop the notes here.

November 18 – Congruence Uniformity, part 2

Recall from last time: We tried to show that forcing is the transitive closure of cutting.
Let’s review some background and go through a slightly different presentation.

Let L = [e, a] ⊆ W be a finite interval of a Coxeter group. We have two relations on
Covers(L):

• ⇒ denotes the transitive closure of forcing; recall that (x, y) forces (x′, y′) if
– x ∨ z ≤ x′ l y′ ≤ y ∨ z; or
– x ∧ z ≤ x′ l y′ ≤ y ∧ z

• (A temporary notation) →C is a relation on shards/slide equivalence classes which
we define as the transitive closure of the relation on shards/slide equivalence classes
in rank 2 intervals as follows:

σ τ

στ

γ1

γ2

γ3

γ4
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We say that σ, τ cut the γi.

If σ cuts τ , then σ also forces τ , and this doesn’t change when we take transitive closure.
What we want to show is that we can get from σ to τ via a sequence of cutting relations.

Recall the following lemma from last class:

Lemma. Let u ≤ v and let

u = x0 l x1 l · · ·l xN = v

u = y0 l y1 l · · ·l yN = v

Then the set of shards in →C of {(xj, xj+1)} is the same as the set of shards in →C of
{(yj, yj+1)}.

Note that the chains necessarily have the same length because we are working with Coxeter
groups which are graded by the length function.

Definition. For u ≤ v, and take any chain u = x0 l x1 l · · ·l xN = v. Define

C(u, v) = {(x′, y′) ∈ Covers(L) : ∃j(xj, xj+1)→C (x′, y′)}

Our lemma then shows that C(u, v) is independent of the choice of chain.
In terms of C(u, v), what we want to show is that for xl y.

C(x, y) ⊇ C(x ∨ z, y ∨ z)

C(x, y) ⊇ C(x ∧ z, y ∧ z)

In fact, we will show this for x ≤ y, not just xl y
We can eliminate z from our notation as follows: let x′ = x ∨ z, y′ = y ∨ z. Then

y ∨ z = y ∨ (x ∨ z) = y ∨ z′. So if x ≤ x′, what we need to show is:

(*) C(x, y) ⊇ C(x′, x′ ∨ y)

and if y′ ≤ y, then
C(x, y) ⊇ C(x ∧ y′, y′)

Proof of (∗). We prove (∗) by induction on `(a)− `(x). The proof for the meet statement is
similar.

Base Case: x = a = x′ ∨ y = y, so C(x, y) = C(x′, x′ ∨ y).
Inductive Step: Choose a chain x = x1 l x2 ≤ x′. Since x2 has length greater than x,

l(a)− l(x2) < l(a)− l(x), so the inductive hypothesis tells us that C(x2, x2∨y) ⊇ C(x′, x′∨y).
We need to show that C(x, y) ⊇ C(x2, x2 ∨ y). We do this in two steps. First, choose

xl x3 ≤ y, and sketch the diagram with the rank 2 parabolic generated by x2, x3.
Step 1: We “move” the chain x3  y to a chain x2 ∨ x3  x2 ∨ y. That is, x3 > x, so

l(a)−l(x3) < l(a)−l(x), so the inductive hypothesis tells us that C(x3, y) ⊇ C(x2∨x3, x2∨y).
Step 2: Now in the rank 2 parabolic, we know that every cover between x2 and x2 ∨ x3 is

cut by or slide equivalent to (x, x3).
It follows that C(x, y) ⊇ C(x2, x2 ∨ y), since the covers in some chain from x to y force

every edge in a chain from x2 to x2 ∨ y. Thus, (∗) is proved. �

Now we are ready to prove congruence uniformity! Recall that congruence uniformity
means that forcing preorder on slide equivalence classes is a partial order. We now know
that slide equivalence classes are shards, and forcing is the same as cutting.

We want to show that the directed graph of cutting has no oriented cycles. The most
natural way to do this is to put a total order on the set of shards so that if σ cuts τ , then σ
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x

y

x2

x2 ∨ y

x′

x′ ∨ y

x

y

x2x3

x2 ∨ y

x2 ∨ x3

comes before τ . To do this, we will put a total order on hyperplanes: specifically, if β⊥ cuts
γ⊥, then β < γ. Between shards in the same hyperplane, we break ties arbitrarily (since
none of them will cut each other).

Choose a symmetric Cartan matrix, i.e. choose the roots to have length
√

2. Choose the
αi to be linearly independent. Let ρ ∈ V ∨ with 〈ρ, αi〉 = 1. Order Φ+ according to 〈ρ, 〉,
breaking ties arbitrarily. We are left to show that if β⊥ cuts γ⊥, then 〈ρ, β〉 < 〈β, γ〉.

Look at a finite rank 2 subsystem with positive roots β1, β2, . . . , βm in order, so that β1, βm
are fundamental.

· · ·
β1

β2 βm−1

βm

Figure 23. The roots of a rank 2 parabolic subgroup. Note that the funda-
mental roots (i.e. the outermost roots) are labelled β1, βm.

Exercise.

βk =
sin πk

m

sin π
m

β1 +
sin p(m+1−k)

m

sin π
m

βm

Pairing this all with ρ, we get

〈ρ, βk〉 =
sin πk

m

sin π
m

〈ρ, β1〉+
sin p(m+1−k)

m

sin π
m

〈ρ, βm〉 ≥ 〈ρ, β1〉+ 〈ρ, βm〉

With the last inequality because: (1) the coefficients are always ≥ 1; and (2) since the βi
are positive roots, ρ pairs positively with β1, βm. It follows that 〈ρ, βk〉 ≥ 〈ρ, β1〉, 〈ρ, βm〉

November 20 - Shards and Forcing in Type A

Recall the type A representation. We will look at some quotients of this lattice. From last
class, to do this, we just need to understand how cutting behaves on the lattice.

Our convention is that the positive roots are {ej − ei}1≤i<j≤n. The rank two parabolic
subgroups are either of the form 〈(ij), (kl)〉 ∼= A1×A1 (with i, j, k, l distinct) or 〈(ij), (jk)〉 ∼=
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A2 (with i, j, k distinct. The corresponding positive roots are {ej − ei, el − ek} (with i <
j, k < l) and {ek − ej, ej − ei, ek − ei} (with i < j < k).

In A1 × A1 sub-systems, there is no cutting. In an A2-subsystem, with i < j < k, the
hyperplanes (ej − ei)⊥ and (ek − ej)⊥ cut (ek − ei)⊥. The two pieces that (ek − ei) ⊥ are cut
into are {x|xj < xi = xk} and {x|xj > xi = xk}. We see this in figure 1.

xj = xkxi = xj

xj < xi = xk xj > xi = xk

Figure 24. Cutting of the hyperplanes for the parabolic subgroup 〈(ij), (jk)〉

In general, the hyperplane {xi = xk} (with i < k) will be cut into 2k−i−1 pieces, as for
each j in the open interval (i, k) we have the choice to have xj > xi = xk or xj < xi = xk.

Definition. Suppose (i, k) = L t R is a partition. We define σ(L|ki |R) to be the shard
{x|xj < xi = xk for j ∈ L, and xj > xi = xk for j ∈ R}.

We now draw Figure 1 using this notation, and focus on the shards rather than the
hyperplanes in Figure 2.

With this, because forcing is the transitive closure of cutting, we have that the shard
σ(L1|k1i1 |R1) forces the shard σ(L2|k2i2 |R2) if and only if i2 ≤ i1 < k1 ≤ k2 and L1 = L2∩(i1, k1)
and R1 = R2 ∩ (i2, k2).

Now, in order to describe some of the quotients, we just need to pick some shards to
collapse, E, making sure that E is closed under the above relation. In actuality, it is easier
to describe the complement K of E, the shards we do not collapse.

Example. Let K = {σ(∅|k+1
K |∅)}. This corresponds to getting rid of all of the hyperplanes

except (ek+1 − ek)⊥. We have seen this quotient before, the quotient is the map we saw on
Problem Set 8, question 3, sending an element w to the set of its left descents.

Example. Let WI be any parabolic subgroup of An, and let ΦI be the corresponding subroot
system. Then we can take K = {σ(L|KI |R)|ek− ei ∈ ΦI}. We have also seen this one before,
this is the map W → WI that sends an element w to wI .

Example. The previous two examples have a common generalization: Let J ⊆ Φ+ be a set
so that if β⊥ cuts γ⊥ and γ ∈ J , then β ∈ J . Then we take K = {σ(L|ki |R)|ek − ei ∈ J}.

Example. Let K = {σ((i, k)|ki |∅)}. Figure 3 shows what this looks like in the case of A2.



42 POSET STRUCTURE OF COXETER GROUPS

σ(L ∩ (j, k)|kj |R ∩ (j, k))σ(L ∩ (i, j)|ji |R ∩ (i, j))

σ(L|ki |R) σ(L\{j}|ki |R ∪ {j})

Figure 25. The different shards corresponding to the parabolic subgroup 〈(ij), (jk)〉

σ(∅|32|∅)σ(∅|21|∅)

σ(2|31|∅)

Figure 26. What the quotient of Example 4 looks like on A2

If this looks familiar, that is because this is the same as the Tamari lattice T3, and in fact
quietening out by K in general will give the Tamari lattice Tn.

To show this, we will show that what we have constructed matches up with Loday’s
construction (Problem Set 7, question 3). In the quotient we have just constructed, we have
that a shard σ(L|ki |R) is collapsed if and only if R 6= ∅ if and only if there is some j ∈ (i, k)
with xj > xi = xk. And to show that the edge gets collapsed in Loday’s construction, we
need to show that the points

(. . . , xi, . . . , xj, . . . , xk, . . . )

(. . . , xk, . . . , xj, . . . , xi, . . . )

have the same tree.
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Well, if such a j exists, we have the point (j, xj) above the points (i, xi) and (k, xk) in the
trees, so they will be in different sub trees, so there order does not matter.

Likewise, if switching xi and xk does not change the tree, then (i, xi) and (k, xk) cannot
be above one another in the tree, so there must be something between them that is above
both of them.

Example. We can generalize the previous construction in the following way: let [n] = LtR
be a partition. Define K = {σ(L∩(i, k)|ki |R∩(i, k)}. The previous construction corresponds
to L = [n]. Note that it does not matter where n, 1 go in the partitions. These are the
Cambrian quotients, and we’ll see more of them next time.

November 22 – Cambrian quotients in type A

Recall the setup from last time: we partition [n] = L t R, and keep only the shards of
the form σ

(
L ∩ (i, k)

∣∣k
i

∣∣R∩ (i, k)
)
. We’ll biject equivalence classes to trivalent planar trees

with |L| + 1 roots and |R| + 1 leaves. Here we are using the “real world” convention that
roots are at the bottom and leaves are at the top, as opposed to the opposite convention from
the computer science literature. Also, Professor Speyer apologizes for defining his notation
such that L corresponds to roots and R to leaves.

Let (y1, . . . , yn) ∈ R with distinct entries. Draw points at (j, yj), and draw vertical rays
down from (j, yj) if j ∈ L, up if j ∈ R. Sufficiently far down on the page there are |L| + 1
regions, and sufficiently far up there are |R| + 1 regions. In each of these |L| + 1 regions
at the bottom, start with 1 root and go up. When reaching a vertex, merge or split the
branches as appropriate (so at a vertex with a down ray, the two branches will merge, and
at a vertex with an up ray, the one branch will split). See Figure 27 for an example. We
claim that two such points give different trees if and only if they are separated by one of our
shards.

•

•

•

•

•

Figure 27. The tree (in orange) generated from L = {2, 5}, R = {1, 3, 4}.

Let (y1, . . . , yn) and (z1, . . . , zn) differ only by exchanging elements in positions i and
k, and suppose that there is no j with yi < yj < yk (and likewise with z). This means
that y and z are related via reflecting over the i = k hyperplane, and that this is the
only hyperplane separating them. Suppose that the shard between them, σ

(
L
∣∣k
i

∣∣R), is not
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σ
(
L ∩ (i, k)

∣∣k
i

∣∣R∩ (i, k)
)
. Then either there is some j ∈ L ∩ R with i < j < k, or there

is some j ∈ L ∩ R with i < j < k. The two cases are symmetrical, so we address the first
case. Having j ∈ R is equivalent to saying yj > yi, yk, and having j ∈ L means the ray
gets drawn downwards. So although the vertices for i and k switch relative positions, they
are still separated by the ray for j, and so the topology of the tree doesn’t change. This is
depicted in Figure 28

•

•

•
(i, yi)

(j, yj)

(k, yk)
•

•

•

(i, zi)

(j, zj)

(k, zk)

Figure 28. The case when j ∈ L ∩ R. To the left is the ray diagram for y,
to the right is that for z.

Conversely, suppose that L = L ∩ (i, k) and R = R∩ (i, k). We have two cases, based on
whether i and k are in the same part of the partition or not. In case 1, if both i and k are
in the same part of the partition, say i, k ∈ L, then their rays point in the same direction,
and there are no rays between them. This case is in Figure 29. In Case 2, if i and k are
in distinct parts, then their rays point in opposite directions, and there are still no rays
separating them. This case is in Figure 30.

•

•

(i, yi)

(k, yk) •

•

(i, yi)

(k, yk)

Figure 29. Case 1, where i, k ∈ L. To the left is the ray diagram for y, to
the right is that for z.

•

•
(i, yi) (k, yk)

•

•

(i, yi)

(k, yk)

Figure 30. Case 2, where i ∈ L but k ∈ R. To the left is the ray diagram
for y, to the right is that for z.
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This description in terms of trees is due to David Speyer, but is not too hard to see it
is equivalent to the description in terms of secondary polytopes in Reading’s “Cambrian
Lattices”, (2006).

Now we look at some other ways to think about Cambrian quotients of Sn.

Lemma. A lattice quotient q : L→ L/θ of L a finite lattice is determined by the set C ⊂ L
of bottom elements of equivalence classes.

Proof. Let π↓ : L → C send x ∈ L to its bottom representative. Such an element exists
because equivalence classes are closed under meet, since if q(x1) = q(x2), then

q(x1 ∨ x2) = q(x1) ∨ q(x2) = q(x1) = q(x2).

Now we claim that π↓(x) =
∨
c∈C, c≤x c. We want to show that if c ∈ C with c ≤ x, then

c ≤ π↓(x). So we want to show that π↓(x)∨c = c. We know that x∨c = c, so q(x)∨q(c) = c,
i.e. q(x) = q(π↓(x)) ≥ q(c). From the worksheet, we can lift this inequality and fix the upper
end, so that we get π↓(x) ≥ y for some y with q(y) = q(c). Since c is the bottom element of
its equivalence class, this means π↓(x) ≥ y ≥ c, as desired. �

What are the bottom elements of Cambrian quotients? They are elements of the form
w = w1 · · ·wn in one-line notation in Sn, where if descend wa = k > wa+1 = i, then for all
j ∈ (i, k), if j ∈ L, then j can’t be right of position a, and if j ∈ R, then it can’t be left.
This condition almost looks like pattern avoidance, except that pattern avoidance doesn’t
normally force two elements to be in adjacent positions.

Lemma. If we have a w of the above form, then consecutivity is not actually required. In
other words, if j ∈ L and i < j < k then we can’t have . . . k . . . i . . . j . . .; if j ∈ cR and
i < j < k then we can’t have . . . j . . . k . . . i . . ..

Proof. The cases are symmetric so we only address the case of i < j < k and j ∈ L. Suppose
we have such an (i, j, k) triple where i and k are as close as possible. By assumption, they
can’t be adjacent so let h be between k and i. Now we have two cases:

(1) If h < j, then we have h < j < k, j ∈ L, appearing in the order . . . k . . . h . . . j . . .
within w. But k and h are closer than k and i, a contradiction.

(2) j < h, then i < j < h, j ∈ L, appearing in the order . . . h . . . i . . . j . . . within w. But
h and i are closer than k and i, a contradiction.

�

So for example if R = ∅, then this means bottom elements are those avoiding the permu-
tation 312.

November 25 – Cambrian quotients in other types

This lecture covers ideas started by Nathan Reading in “Cambrian Lattices” (2006), “Clus-
ters, Coxeter-sortable elements and noncrossing partitions” (2007) and “Sortable elements
and Cambrian lattices” (2007) and then further developed by Reading and David Speyer in
“Sortable elements in infinite Coxeter groups” (2008) and “Sortable Elements for Quivers
with Cycles” (2010). The earlier papers are all in finite type and rely on a lot of computer
checks, the papers with Speyer are uniform. The first Reading-Speyer paper has an acyclicity
hypothesis which we figured out how to remove in the second paper.
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I had hoped that, after giving all these lectures and understanding lattice congruences of
weak order so much better, these proofs would become so much slicker. They didn’t. So this
lecture is going to be a survey of results without proofs, because the proofs are still difficult.

Let W be a Coxeter group, let Γ be its Coxeter diagram and let Ω be an orientation of
the graph Γ. For example, if W is Sn then Γ looks like

(12) (23) (34) · · · (n− 1 n)

We orient (j − 1 j)← (j j + 1) if j ∈ L and (j − 1 j)→ (j j + 1) if j ∈ R.
Our goal is to describe quotients W � CambΩ, which are lattice quotients on each interval

[e, a]. We will give four such descriptions. Unfortunately, it is not clear that any of them are
equivalent to each other, or that any of them are lattice quotients! We first introduce some
preliminary notations.

Choose a reflection representation where the αi are linearly independent. Define a skew
symmetric bilinear form ω on V where

ω(αi, αj) =


−Aij > 0 si ← sj
Aij < 0 si → sj
0 sisj = sjsi

.

We can also consider ω as defining a map η from V to V ∨ such that ω(β, γ) = 〈η(β), γ〉.
The condition that ω is skew-symmetric corresponds to η(β) ∈ β⊥.

Description 1 of the Cambrian Quotient A shard σ is not collapsed in CambΩ if and
only if η(β) is in the relative interior of σ.

Let’s see what this means in type A. Which of the shards of dimension ek − ei does
η(ek− ei) lie in? Let i < j < k. We want to know on which side of the hyperplane (ej − ei)⊥
the point η(ek − ei) lies. In other words, we want to know the sign of 〈η(ek − ei), ej − ei〉 =
ω(ek − ei, ej − ei). We have ω(ek − ei, ej − ei) = ω(ek − ej, ej − ei) = ω(αk−1 + · · ·+ αj+1 +
αj, αj−1 + · · ·+αi+1 +αi). If we expand the last expression into terms of the form ω(αq, αp),
there is only one nonzero term, ω(αj, αj−1). This last term is 1 if j ∈ R and −1 if j ∈ L.
So, putting γ = η(ek − ei), we have shown that γi = γk < γj if j ∈ R and γj < γi = γk if
j ∈ L, matching our previous description.

Unfortunately, it seems rather unclear how to show that this construction is closed under
cutting in types other than A, and particularly in infinite types.

Description 2 of the Cambrian Quotient We observed last time that a lattice con-
gruence is determined by the set of minimal elements in the congruence classes. We will call
these elements Ω-sortable, and denote the set of them by C.

Here is our second description: Let v ∈ W . Let R be any rank two parabolic of W with
roots β1, β2, . . . , βm ordered so that ω(βi, βj) > 0 for i < j.

Roughly, v will be in C if and only if , for any such R, the intersection inv(v)∩R is either
an initial segment of R, or else the singleton {βm}. More precisely, m could be infinity and
that is fine. Also, it might happen that ω is 0 on R. This happens only in types A1 × A1

and Ã1. In the first case, we impose no restriction on inv(v)∩R and, in the second, we insist
that inv(v) ∩R is one of ∅, {β1} or {β∞}.

In type A, we are saying that, if i < j < k with j ∈ L, then we cannot have inv(v)∩{ej−
ei, ek − ei, ek − ej} = {ek − ei, ek − ej}. In other words, we are avoiding · · · k · · · i · · · j · · · in
this case, as discussed before. The case where j ∈ R is similar.
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In general, if v obeys the above condition, then it is easy to see that all the shards corre-
sponding to covers (u, v) are not collapsed. However, it doesn’t seem obvious how to show the
converse. This is the switch between avoiding · · · ki · · · j · · · and avoiding · · · k . . . i · · · j · · ·
in type A.

We now introduce another piece of notation. Say that a set J of vertices of Γ is Ω-acyclic
if the orientation Ω restricts to an acyclic orientation on J . If so, let cJ be

∏
j∈J sj ordered

with si before sj if Ω orients si ← sj.
Description 3 of the Cambrian Quotient Again, we describe the Ω-sortable elements.

They are the elements which have reduced factorizations of the form cJ1cJ2 . . . cJr where the
Ja are Ω-acyclic and J1 ⊇ J2 ⊇ · · · ⊇ Jr. It is relatively straightforward to show that any
element which has such a factorization obeys the condition in Description 2. Again, the
converse seems very unclear.

Let’s clarify what these words look like if Ω is acyclic. Let s be a sink of Ω and let Ω′ be
the orientation where we reverse all edges incident on s to make it a source. We abbreviate
S \ {s} to 〈s〉.

Suppose that v has a reduced factorization as above. Note that, if s ∈ J1 then v ≥ cJ1 ≥ s
and, if s 6∈ J1, then v is in the parabolic subgroup W〈s〉. More precisely, we claim:
• Let w ∈ W with w ≥ s. Then w is Ω-sortable if and only if sw is Ω′ sortable. To see this,

note that we can transform factorizations cJ1cJ2 . . . cJr for w into factorizations cJ ′1cJ ′2 . . . cJ ′r
for Ω′ where s ∈ J ′p if and only if s ∈ Jp+1 and the J ′a are otherwise equal to the Ja.
• Let w ∈ W with w 6≥ s. Then w is Ω-sortable if and only if w ∈ W〈s〉 and is Ω|〈s〉-sortable.
From this, it is not bad to show that Description 3 is equivalent to Description 4 of the

Cambrian Quotient. For simplicity, take Ω acyclic and let s and Ω′ be as above. Then we
have u ≡ v in CambΩ if and only if one of the following holds:
• u ≥ s and v ≥ s, and su ≡ sv in CambΩ′ .
• u and v ∈ W〈s〉 and u ≡ v in CambΩ|〈s〉 .
In particular, we never have u ≡ v if u ≥ s and v 6≥ s or vice versa.

November 27 – Beyond the Tits cone

Let W be an infinite Coxeter group. Then W is not a lattice, since joins may not exist at
all. In this lecture, we will explore attempts to define a larger lattice, with W sitting at the
bottom.

There is a dumb answer: Just add one extra element 1̂ which is bigger than every element
of W . This is a complete lattice. The element 1̂ is the join of all subsets of W which didn’t
have joins before (and of all subsets of the extended lattice that contain 1̂); it is also the
meet of the emptyset and of the singleton {1̂}.

Why don’t we like this answer?

• It has no relation to the representation theory of quiver path algebras, or preprojective
algebras. It has no relation to cluster algebras (which are related to the previous two
topics.)
• We expect that there should be an order reversing symmetry of our order, corre-

sponding to u 7→ uw0 in finite type.
• Lam and Pylyavskyy,“Total positivity for loop groups II: Chevalley generators”, pro-

vide an excellent candidate for the subset of our larger lattice which can be described
as
∨
wi where wi is a sequence w1 < w2 < · · · in affine type. Chen and Labbé “Limit

directions for Lorentzian Coxeter systems” generalize this to hyperbolic groups and
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Lam and Thomas “Infinite reduced words and the Tits boundary of a Coxeter group”
generalize to general Coxeter groups.

There is also an important construction that does not work. We can not look at regions
of V ∨ \

⋃
β∈Φ+ β⊥. Note that this is equivalent to looking at sets of roots of the form

{β ∈ Φ+ : 〈θ, β〉 < 0} for various θ ∈ V ∨. (Moreover, switching < to ≤ doesn’t help.) Let’s
see why this doesn’t work.

Consider type Ã3, whose Coxeter diagram is a 4-cycle. We should have elements of our
hypothetical lattice corresponding to the regions s1s2D, s3s4D, s2s3(−D) and s4s1(−D).
The set of roots corresponding to s1s2D is the inversions of s1s2, namely, {α1, α1 + α2}.
Similarly, s3s4D corresponds to {α3, α3 + α4}, and the regions s2s3(−D) and s4s1(−D)
correspond to Φ+ \ {α2, α2 + α3} and Φ+ \ {α4, α4 + α1}. Note that the sets {α1, α1 + α2}
and {α3, α3 + α4} are contained in both the sets Φ+ \ {α2, α2 + α3} and Φ+ \ {α4, α4 + α1}.
So, if we had some hypothetical set X which was the join of s1s2 and s3s4, we would want
to have α1, α1 + α2, α3, α3 + α4 ∈ X but α2, α2 + α3, α4, α4 + α1 6∈ X. But it is impossible
to have

〈θ, α1 + α2〉, 〈θ, α3 + α4〉 < 0 and 〈θ, α2 + α3〉, 〈θ, α1 + α4〉 ≥ 0

since (α1 + α2) + (α3 + α4) = (α2 + α3) + (α1 + α4).
We can carry out a similar analysis with (s1s2s3s4)N(D), (s3s4s1s2)N(D), (s2s3s4s1)N(−D)

and (s4s1s2s3)N(−D) and conclude that there should be some X in our hypothetical lattice
which is greater than all (s1s2s3s4)N(D) and (s3s4s1s2)N(D), and less than all (s2s3s4s1)N(−D)
and (s4s1s2s3)N(−D). If X is then to be a set of roots, we must have⋃
N

(
inv((s1s2s3s4)N) ∪ inv((s3s4s1s2)N)

)
⊆ X ⊆ Φ+\

⋃
N

(
inv((s2s3s4s1)N) ∪ inv((s4s1s2s3)N)

)
.

It turns out that the two sides of the inequality are equal! So there is a set of roots which
really wants to be in our lattice.

Proceeding in this manner, one can build lots of sets which want to be in our lattice. I
will describe two attempts to describe them, due to Dyer and Viard.

Let Φ be a root system and let L be a two-dimensional subspace for which |L ∩ Φ+| ≥ 2.
The roots L∩Φ+ live in a half space of the two dimensional space L, so they are ordered by
angle, up to reversal. While we won’t need it, it is extremely valuable for context to know:

Lemma (Dyer). With L as above, either L ∩ Φ+ is finite, or else L ∩ Φ+, in which case it
has order type 0

1
< 1

2
< 2

3
< · · · < 3

2
< 2

1
< 1

0
.

The following definition is due to Dyer15: Let B ⊆ Φ+. We say that B is biclosed if, for
all L as above, L ∩B is either an initial or a final segment of L ∩ Φ+.

Dyer conjectures that biclosed sets, with respect to containment, form a complete lattice.
The evidence is the following:

• If W is finite, then biclosed sets are inversion sets. More generally, finite biclosed
sets are inversion sets. This is a good exercise.
• Dyer asserts he has checked this in affine type. David Speyer and Grant Barkley have

checked Ã and C̃, and maybe also the other classical affine types.

15“On the weak order of Coxeter groups”. See also Hohlweg and Labbè, “On inversion sets and the weak
order in Coxeter groups”.
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• Thomas McConville and collaborators have a number of papers that look at bi-
closed sets in certain finite subsets of infinite root systems. See McConville “Lattice
structure of grid-Tamari orders”, Garver and McConville “Oriented flip graphs of
polygonal subdivisions and noncrossing tree partitions” and Garver, McConville and
Mousavand, “A categorification of biclosed sets of strings”. Everything in these pa-
pers looks like a quotient of an infinite lattice, where we have discarded all but finitely
many shards as in our Third Example of a quotient of Sn.

I’d also like to publicize a lesser known work: Francois Viard was a student of Biagioli
and Chapoton who seems to have left math. His thesis, “Des graphes orients aux treillis
complets : une nouvelle approche de l’ordre faible sur les groupes de Coxeter” introduces
a fascinating new approach to studying weak order. (Don’t be scared, only the title and
introduction are in French; the rest is in English.)

He makes the following definition: Let G be a directed acyclic graph where every vertex has
(finite) even out degree, and where there are no infinite chains of the form • → • → • → · · · .
Let V be the set of vertices of G and, for v ∈ V , let Out(v) = {w ∈ V : v → w}.

Define a subset C of V to be consensus if

• If v ∈ V then |C ∩Out(v)| ≥ 1
2
|Out(v)|.

• If v 6∈ V then |C ∩Out(v)| ≤ 1
2
|Out(v)|.

Or, stated in the contrapositive, if |C ∩ Out(v)| < 1
2
|Out(v)| then v 6∈ V ; if |C ∩ Out(v)| >

1
2
|Out(v)| then v ∈ V and, if |C ∩Out(v)| = 1

2
|Out(v)| then we have a free choice.

Viard calls these sets balanced , but I think that the metaphor of V as voters and C as
a consensus is too good to pass up.

As an example, let G be 1 ← 2 → 3. Then the consensus sets are ∅, {1}, {3}, {1, 2},
{2, 3} and {1, 2, 3}. Hopefully, the reader by now recognizes these as the inversion sets in
A2. The task of suggesting three public figures whose political views have this behavior is
left to the reader.

As we checked on a problem set for finite V , the set of consensus sets is always a lattice.
Viard suggests that we may be able to put a directed graph structure on Φ+ for which the

consensus sets are the biclosed sets.
Indeed, in types A, D and E, we can put γ → β if β cuts γ. As an example, here is the

graph for A3:

e4 − e1
//

��

++

��

e4 − e2
//

��

e4 − e3

e3 − e1
//

��

e3 − e2

e2 − e1

Let’s prove that this works. In other words, given a subset X of Φ+ in types A, D or E,
let’s show that it X is biclosed if and only if it is consensus.

Let β ∈ Φ+. Then the roots which cut β can be organized into pairs {α, γ} with α+γ = β
in each pair (since all the non-commutative rank two parabolics are A2’s in types ADE).

Suppose that X is biclosed. Consider any β ∈ X, we will show that the majority of
Out(β) is in X. Indeed, pair off the elements as above and, in each pair (α, γ), the biclosed
condition shows that at least one of α and γ must be in X. The case where β 6∈ X is similar.
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Suppose that X is consensus. Choose a total order on Φ+ refining the cutting partial
order (as in our proof of congruence uniformity). We will show by induction on γ that
X ∩{α, γ, β} obeys the biclosed condition for each A2-root-subsystem with β in the middle.

Suppose to the contrary that this fails for some {α, γ, β}. We’ll do the case that X ∩
{α, γ, β} = {γ}; the case where the intersection is {α, β} is similar.

The consensus condition implies there must be some other {α′, γ, β′} with α′ + β′ = γ
and {α′, γ, β′} ⊆ X. Now, look at the rank 3-subsystem spanned by {α, α′, β, β′, γ}. This
must be an A3, because all the rank two parabolics in type ADE are A3, A2 × A1 or
A1 × A1 × A1, and the latter two cases don’t have five roots obeying α + β = α′ + β′ = γ.
Then, up to symmetries of the situation, we can assume the sixth positive root in this A3 is
α− α′ = β′ − β =: δ. So the roots are laid out as in the diagram below:

δ α α′

γ

β′

β

By induction, we know the biclosure condition holds for the root subsystems (δ, α, α′) and
(δ, β′, β). But then the fact that α 6∈ X and α′ ∈ X implies that δ 6∈ X, and the fact that
β′ ∈ X and β 6∈ X implies that δ ∈ X. This is a contradiction.

December 2 – Introduction to Bruhat order

Today, we move on from weak order and consider Bruhat order, a different partial order
on Coxeter groups. First, a few notes on notation:

• From here on, we’ll be using ≤ by default to refer to Bruhat order. If we want to
refer to weak order, we’ll use ≤L or ≤R, according to whether it’s left or right weak
order.
• We’ve previously used s1, . . . , s` as a list of the simple reflections of a Coxeter group

in a fixed order; but in what follows, to avoid descending into an abyss of nested
indexing, we’ll use these to refer to arbitrary simple reflections.
• When we refer to a “subword” of a word, we allow the letters to be nonconsecutive,

but they must appear in order. “CAN” is a subword of “MICHIGAN”; “GAIN” is
not.

Definition. Let W be a Coxeter group, u,w ∈ W . Then we say u ≤ w in Bruhat order
if any of the following equivalent conditions hold:

(1) There is a reduced word s1s2 · · · s` for w with a subword sk1 · · · skm = u.
(2) For any reduced word s1s2 · · · s` for w, there exists a subword sk1 · · · skm = u.
(3) For any word s1s2 · · · s` for w, there exists a subword sk1 · · · skm = u.

(4), (5), (6) The same as the previous three conditions, respectively, but where the subword is
required to be a reduced word for u.
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Some simple examples are shown in Figures 31 and 32. We can immediately note one
difference between Bruhat and weak order: Bruhat order is not a lattice. For example, s1

and s2 have no join in either example.

s1s2s1

s1s2 s2s1

s1 s2

e

Figure 31. Bruhat order in type A2.

s1s2s1s2

s1s2s1 s2s1s2

s1s2 s2s1

s1 s2

e

Figure 32. Bruhat order in type I2(4) = B2.

We now set about proving the equivalence of these definitions. First, a lemma:

Lemma. Let s1 · · · s` be any word. If there is a subword with product v, then there is a
reduced subword with product v.

Proof. We can consider without loss of generality the case that v = s1 · · · s`, ignoring the
simple reflections not appearing in the initial word for v. Let t1, . . . , t` be the reflection
sequence. If the word is not reduced, we must have ti = tj for some i 6= j. We then claim
that removing si and sj from the initial word produces another, shorter word for v. Indeed,
we have

v = titjv = ti(s1s2 · · · sj · · · s2s1)(s1 · · · s`)
= ti(s1 · · · ŝj · · · s`)
= (s1s2 · · · si · · · s2s1)(s1 · · · ŝj · · · s`)
= s1 · · · ŝi · · · ŝj · · · s`

We can continue doing this until we end up at a subword which is a reduced word for
v. �
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With this lemma, we then know that (1) ⇔ (4), (2) ⇔ (5), (3) ⇔ (6), since existence
of a subword giving u implies existence of a reduced subword giving u. Addtionally, it’s
straightforward to check that (3) ⇒ (2) ⇒ (1), and we know (2) ⇒ (3) because any word
for u will have a reduced subword.

It remains to show that:

Lemma. (1) ⇒ (2): if any reduced word for w contains a subword which is a word for u,
they all do.

Proof. Let w = s1 · · · s` = s′1 · · · s′` be two reduced words for w. We want to show that the
set of elements we get as products of subwords is the same for either word.

We know from a previous homework exercise that we can transform the first word into the
second just by applying braid moves. Thus it will suffice to show that the set of elements
obtained as products of subwords is unchanged by the application of a single braid move

· · · (sisjsisj · · · ) · · ·
⇓

· · · (sjsisjsi · · · ) · · ·
If we obtain some element as the product of a subword of the top word, we can break that
subword down into the reflections coming from the left ellipsis, the alternating si’s and sj’s,
and the right ellipsis. We can carry the reflections from the left and right ellipses down to the
other word, so all we need to show is that the elements obtained from subwords of sisj · · ·︸ ︷︷ ︸

length mij

are the same as those obtained from subwords of sjsi · · ·︸ ︷︷ ︸
length mij

. But in either case, we just get all

elements of the rank 2 parabolic subgroup generated by si and sj. �

So we have a few different ways of looking at Bruhat order. Definition (1) is particularly
useful for showing that u ≤ w, whereas definitions (2) and (3) are useful for showing the
negation.

Now we start building up some tools for working with Bruhat order. This will take a little
while, but as an example of what we’ll eventually show, here are some characterizations of
what covers in this order mean.

Theorem. Let u, v ∈ W . The following are equivalent.

• ul v.
• `(u) = `(v)−1, and there is a reduced word s1 · · · s` for v such that u = s1 · · · ŝk · · · s`.
• `(u) = `(v) − 1, and for any reduced word for v, we can obtain u by deleting a

reflection as above.
• `(u) = `(v)− 1, and u−1v, v−1u, uv−1, or vu−1 is a reflection.
• `(u) = `(v)− 1, and u = tv, t ∈ inv(v).

We draw another contrast with weak order by noting the presence of the condition “`(u) =
`(v) − 1” in all of these statements. If we ignore this condition, all of the latter 4 bullet
points above hold for the elements e and s1s2s1 in A2, but they certainly don’t form a cover.
The problem is that removing a letter from the middle of a word can shrink its length
dramatically, in contrast to only working at the ends of a word as we do in weak order.

We start working towards this result with a couple of lemmas.
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First, let w ∈ W and t ∈ T , the set of reflections. Then wD and twD are on opposite
sides of Fix(t), which means t is an inversion of w or tw, but not both. We show:

Lemma. If t ∈ inv(tw), then w < tw.

Proof. Choose a reduced word s1s2 · · · s` for tw. Let tj be the reflection sequence associated
to this word. Because t ∈ inv(tw), t = tk = s1s2 · · · sk · · · s2s1 for some k. Then

w = t(tw) = ts1 · · · sk · · · s`
= (s1s2 · · · sk · · · s2s1)s1 · · · sk · · · s`
= s1 · · · ŝk · · · s`

implying w < tw. �

Corollary. For all w ∈ W and t ∈ T , either tw < w or w < tw, and we can tell which is
true by checking if t ∈ inv(w) or t ∈ inv(tw), respectively.

We note again that this is in contrast with weak order. The two elements marked in black
here are related by a reflection, but are not comparable in right weak order:

Here’s another lemma, approaching the last bullet point of the above theorem:

Lemma. If u ≤ w, there exists v with u < v ≤ w, v = tu for some t ∈ T , and `(v) = `(u)+1.

Proof. Let w = s1 · · · sq be a reduced word. Then there is some reduced word for u obtained
by omitting the reflections sk1 , . . . , skr , listed in the order they appear in our word for w.
From among all such reduced words for u, we choose the one in which sk1 occurs farthest to
the right in the word for w.

Now consider the element v given by the word obtained by omitting sk2 , . . . , skr but not
sk1 from our word for w. Certainly v ≤ w. We also have v = tu, where t = tk1 is the k1th
entry in the reflection sequence of our word for w; this is because tk1 is also the k1th entry in
the reflection sequence of our word for v, as v and w’s words do not differ up to that point.
By our lemma above, v = tu implies either u < v or v < u.

We now rule out the possibility that v < u. This will show that u < v. Additionally, we
know `(v) ≤ `(u) + 1 because of the way we constructed v from a reduced word for u. So
once we know u < v, this will imply `(u) < `(v) and force the equality `(v) = `(u) + 1.

By our lemma above, it will suffice to show that t /∈ inv(u). So suppose for a contradiction
that t ∈ inv(u). Then t appears in the reflection sequence of our word for u. First, we claim
that it must appear after the position we deleted sk1 from. This is because the words (and
thus reflection sequences) of w and u are the same up to that point, so if t appeared before
the position of sk1 , it would appear a second time in the reflection sequence of w at that
position, contradicting that we chose a reduced word for w. Suppose that t appears as the
entry at the position of sp in the reflection sequence for u.

But then, we claim that we can take sp out of our word for u, put sk1 back in, and the
resulting word will also produce u. Because t is the sp-entry of the reflection sequence, we
can write tu with a word obtained by removing sp from word for u. Then multiplying by t
on the left again can be realized by re-inserting sk1 , for the same reason that tu = v (using
the fact that p appears to the right of k1).
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We’ve created a new reduced word for u which agrees with our reduced word for w for
more characters. This contradicts the maximality used in our initial choice of a reduced
word for u. �

We’ll look at some more foundational results in the next few classes. For now, we close
by considering: what is the geometric picture here?

As usual, we assume that D◦ 6= ∅. Given any element w ∈ W a point x ∈ wD◦, and a
reflection t ∈ T , we consider the element x − tx. This is a multiple of the coroot β∨t , by
definition. Our above lemma then shows that tw < w precisely when x − tx is a positive
multiple of β∨t , that is, when wD◦ lies on the positive side of Fix(t) and t /∈ inv(w).

Pictorially, since every reflection induces a relation in Bruhat order, we can view the order
overlaid on the hyperplane arrangement as in Figures 33 and 34, where we represent the
regions by the points of a W -orbit.

e

s2

s2s1

s1s2s1

s1

s1s2

Figure 33. The Bruhat order for A2, viewed geometrically. Note how the
cover relations (together with the non-covering relation e < s1s2s1) arise from
reflections.

December 4 – Bruhat Order on Parabolic Quotients

Last time, we saw what covers looked like in Bruhat Order: vt l v if and only if t ∈ T
with `(vt) = `(v)− 1.

What does this look like in type A? All reflections in type A are of the form (ij) with
i < j. If we have that w(ij) l w, then we have that (ij) is an inversion of w, so wi > wj
and we need `(w(ij)) = `(w)− 1, which will happen if and only if there is no k ∈ (i, j) with
wi > wk > wj. When viewing type A as permutation matrices, we have that this condition
will hold if and only if the submatrix with corners (i, wi) and (j, wj) has no other nonzero
entries besides at these corners.

Now, we turn toward seeing how parabolic subgroups behave with this order. We first
recall some basic things we know about parabolic subgroups.

Say the set of generators of W is S. For a subset J ⊆ S, we define WJ = 〈s|s ∈ J〉, and
this is also a Coexter group. We also have the sets JW = {w ∈ W |s is a left ascent of w,
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e

s2

s2s1

s2s1s2

s1s2s1s2

s1

s1s2

s1s2s1

Figure 34. The Bruhat order for B2, viewed geometrically. Again, non-
covering relations induced by hyperplanes are depicted by dashed lines.

for all s ∈ J}, and W J = {w ∈ Ws is a right ascent of w, for all s ∈ J}. We proved that
every w ∈ W can be factored uniquely as w = wJ

Jw = wJJw for some Jw ∈ JW , wJ ∈ W J ,

Jw,wj ∈ WJ . Moreover, we have that `(w) = `(wJ) + `(Jw) = `(wJ) + `(Jw).
Now, the fact that every w can be written uniquely as w = wJJw with wJ ∈ W J and

Jw ∈ WJ means that the set W J acts as a set of representatives for the cosets in W/WJ .
This allows us to give the following definition

Definition. We define the Bruhat order on the quotient W/WJ by saying that uWJ ≤ vWJ

if the corresponding W J representatives, uJ , vJ satisfy uJ ≤ vJ .

Now, this definition is standard, but, obviously, not very good. Why would we need to
pass to the quotient and not just work with the set W J since the order would just be the
restriction in this case? This inspired Professor Speyer to give an alternative, equivalent
definition that makes more sense in terms of talking about quotients:

Definition. We define the Bruhat order of the quotient W/WJ by saying that uWJ ≤ vWJ

if there exists u′ ∈ uWJ and v′ ∈ vWJ with u′ ≤ v′.

Now, clearly the first definition implies the second, and after a few lemmas, we will see
that the second implies the first.

Lemma (Exchange Lemma). Suppose u < v, s is a right ascent of u and a right descent of
v. Then us ≤ v and u ≤ vs.

Proof. Choose a reduced word v = s1 . . . s` with s` = s (we can do this because s is a right
descent of v). Now pick a reduced subword u = si1 . . . sim , noting that sim 6= s, since s is a
right ascent of u. Then we have that us = si1 . . . sims is a subword of s1 . . . s`, so us ≤ v,
and si1 . . . sim is a subword of s1 . . . s`−1 = vs so u ≤ vs. �

Lemma. The map u→ uJ is order preserving.
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{1, s1}

{s2, s2s1}

{s1s2, s1s2, s1}

Figure 35. Quotient for A2, with J = {s1}

Proof. Let u ≤ v in W . Want uJ ≤ vJ . We do this by induction on `(Jv).
Now, note that because `(uJ) + `(Ju) = `(u), we have that uJ ≤ u ≤ v. If `(Jv) = 0, then

v = vJ and we are done. Otherwise, v has some right descent s ∈ J . But also, s is a right
ascent of uJ , so we must have uJ ≤ vs. By the inductive step, we have that uJ ≤ (vs)J . But
(vs)J = vJ , since they are both in the same coset. �

Now, we can show that the second definition implies the first. Suppose we have uWJ , vWJ ,
with u′ ∈ uWJ , v′ ∈ vWJ , and u ≤ v. Then uJ ≤ vJ , so the cosets uWJ ≤ vWJ in the first
definition.

Putting this order in geometric terms, pick a representation of W with the αs, α
∨
s linearly

independent. Recall that we had the the stabilizer of a vector x with 〈x, αs〉 = 0 for s ∈ J and
〈x, αs〉 > 0 is WJ . This means that we can identify the quotient W/WJ with the orbit Wx.
And it turns out that we can view the order relation in terms of the orbit in an equivalent
way:

Proposition. Bruhat order on W/WJ is the transitive closure of the relation ty < y if
ty − y ∈ R>0β

∨.

Proof. Suppose we had vx, t1vx, . . . , tn . . . t1vx with tk−1 . . . t1vx − tk . . . t1vx ∈ R>0β
∨
tk

for
all k. Put wk = tk . . . t1v. We know that wkx ∈ wkD. We can perturb x to be in D0,
and then the same perturbation after applying wk will land in wkD

0. Then the fact that
wk−1x− wkx ∈ β∨tk means that wk−1 > wk, so we have w1 > w2 > · · · > wn.

Conversely, suppose w1 > 22 > · · · > wn, with wk = tkwk−1. Then we have that wkx −
wk−1x ∈ R≥0β

∨
T . If wkx − wk−1x = 0, then they are equal and we can remove them.

Otherwise, we have that wk−1x > wkx, and so we are good. �

In Sn the W ′
Js are all Young subgroups, Sk×Sn−k. In this case we have a bijection between

Sn/Sk × Sn−k and
(

[n]
k

)
. In this case, we have that Wx = {ei1 + · · ·+ eik |1 ≤ i1 < i2 < · · · <

ik ≤ n} and (i1, . . . , ik) < (j1, . . . , jk) if and only if i1 < j1, , i2 < j2, . . . , and ik < jk.
A special case of this is when we chose J = [n + 1]\{j}. In this case, the quotient is a

distributive lattice. This is part of a general theory of “minuscule” parabolic quotients:



POSET STRUCTURE OF COXETER GROUPS 57

Theorem. Let W be a Coxeter group and WJ a parabolic subgroup. The following are
equivalent:

(1) W J is a lattice with respect to Bruhat order.
(2) W J is a distributive lattice with respect to Bruhat order.
(3) W J is a distributive lattice with respect to weak order.
(4) ≤ and ≤R coincide on W J .

See Stembridge, “On the Fully Commutative Elements of Coxeter Groups”, Theorem
7.1 (1996) and Proctor “Bruhat lattices, plane partition generating functions, and minuscule
representations” (1984). The parabolic quotients described in the question are called the mi-
nuscule quotients. If W1/WJ1 and W2/WJ2 are minuscule, then so is W1/WJ1 ×W2/WJ2 ,
so we can reduce to the connected case. Here is the list of connected minuscule quotients.
In each case, [n] \ J is singleton; we mark it with a ◦.

Dynkin diagram Description as W/WJ Alternate description

• • · · · ◦ · · · • (An/Ak−1 × An)
(

[n]
k

)
◦ 4 • · · · • Bn/An−1 {−1, 1}n

• 4 • · · · ◦ Bn/Bn−1 {±1,±2, . . . ,±n}

• • · · · ◦
•

Dn/Dn−1
{±1,±2, . . . ,±n}

but 1 and −1 are incomparable

• • · · · •
◦

Dn/Dn−1
(s1, . . . , sn) ∈ {−1, 1}n

where
∏
sj is fixed at 1

◦ m • , m ≤ ∞ I2(m)/〈s1〉 {1, 2, . . . ,m}
• • • • ◦

•
E6/D5

• • • • • ◦
•

E7/E6


	October 18 – Introduction to Weak Order
	October 21 – Introduction to lattices
	October 23 – Tamari Lattices and Related Topics
	October 25 – Lattice Congruences
	October 28 – Join Irreducibles
	October 30 and November 1 – Behavior of covers under quotients
	November 4 – Congruence uniform lattices and doubling, part 1
	November 6 – Congruence uniform lattices and doubling, part 2
	November 8 – Semidistributivity
	November 11 – Weak order is semidistributive
	November 13 - Shards and Slide Equivalence
	November 15 – Congruence Uniformity, part 1
	November 18 – Congruence Uniformity, part 2
	November 20 - Shards and Forcing in Type A
	November 22 – Cambrian quotients in type A
	November 25 – Cambrian quotients in other types
	November 27 – Beyond the Tits cone
	December 2 – Introduction to Bruhat order
	December 4 – Bruhat Order on Parabolic Quotients 

