Problem Set 11: Due **Monday**, December 9

See the course website for homework policy.

- 1. Please read the course notes for November 22-27 and suggest a question or something that could be improved.
- 2. This is a lemma we'll want on Wednesday or Friday: Let W be a Coxeter group, let s_i and s_j be in W and let $w \in W$ have s_i as a left ascent and s_j as a right ascent. Suppose also that $s_i w \neq w s_j$. Show that s_i is a left ascent of $w s_j$ and s_j is a right ascent of $s_i w$.
- 3. As usual, let W be a Coxeter group and V a reflection representation. Assume that both the α_i and α_i^{\vee} are linearly independent. Let $x \in V$ and let Wx be the W-orbit of x. Let G be the directed graph with vertex set Wx and edge $ty \to y$ for $y \in Wx$ whenever y ty is a positive multiple of β_t .
 - (a) Sketch Wx for the cases $(W, x) = (A_3, e_1 + e_2)$ and $(W, x) = (B_3, e_1 + e_2)$.
 - (b) Show that G is acyclic. (Hint: Use a vector in D° .)
 - (c) Let P be the poset obtained by transitive closure of the directed acyclic graph G. Draw the Hasse diagram of P for the cases $(W, x) = (A_3, e_1 + e_2)$ and $(W, x) = (B_3, e_1 + e_2)$.
- 4. Let k be a field. For an invertible $n \times n$ matrix g with entries in k and $0 \le i, j \le n$, let $r_{ij}(g)$ be the rank of the $i \times j$ submatrix in the lower left of g. We consider a $0 \times j$ or $i \times 0$ matrix to have rank 0.
 - (a) Prove the following relations:
 - 1. We have $r_{0j}(g) = r_{j0}(g) = 0$ and $r_{nj}(g) = r_{jn}(g) = j$.
 - 2. We have $0 \le r_{(i+1)j}(g) r_{ij}(g)$, $r_{i(j+1)}(g) r_{ij}(g) \le 1$.
 - 3. If $r_{(i+1)j}(g) = r_{i(j+1)}(g) = r_{ij}(g) + 1$, then $r_{(i+1)(j+1)}(g) = r_{ij}(g) + 2$.
 - (b) Let r_{ij} , for $0 \le i, j \le n$, be an array of nonnegative integers obeying the conditions of part (a). Show that there is a unique permutation matrix w such that $r_{ij} = r_i(w)$.
 - (c) We write B for the group of invertible upper triangular $n \times n$ matrices. Let $g \in GL_n(k)$ and let w be the unique permutation matrix with $r_{ij}(w) = r_{ij}(g)$. Show that there are matrices b_1 and $b_2 \in B$ such that $g = b_1 w b_2$.