Problem Set 3: Due Friday, September 27

See the course website for homework policy.

- 1. Read the Course Notes from "Reflections transposition and roots" through "Parabolic subgroups". (As of Sept. 18, this means reading to the end of the notes, but I hope to add one or two more sections.) Suggest either something to be improved, or a question these notes raise.
- 2. In this problem, we fulfill a promise made in class: Make our usual definitions, and assume that D° is nonempty. Let $t \in W$ act on V^{\vee} by a reflection. We will show that t is of the form ws_iw^{-1} for some $w \in W$ and some Let $t = s_{i_1}s_{i_2}\cdots s_{i_{\ell}}$ and let H = Fix(t). Put $v_k = s_{i_1}s_{i_2}\cdots s_{i_k}$.
 - (a) Show that H does not pass through any of the $v_k D^\circ$.
 - (b) Show that H is the wall along which $v_{k-1}D$ borders v_kD for some k.
 - (c) Deduce that $t = v_{k-1}s_{i_k}v_{k-1}^{-1}$.
- 3. Let W be a finite Coxeter group. The longest element, w_0 , is the unique element of W satisfying $w_0 D = -D$. Describe the longest element w_0 , and its action on V, when W is of types A_n , B_n and D_n .
- 4. Let W be a Coxeter group with s_i and m_{ij} as usual. Given a word in W, the (i, j) braid move is to replace length m_{ij} length m_{ij}

the substring $s_i s_j s_i s_j \cdots$ by $s_j s_i s_j s_i \cdots$. Let $s_{i_1} s_{i_2} \cdots s_{i_\ell}$ and $s_{j_1} s_{j_2} \cdots s_{j_\ell}$ be two reduced words with the same product w. The aim of this problem is to show that we can transform $s_{i_1} s_{i_2} \cdots s_{i_\ell}$ to $s_{j_1} s_{j_2} \cdots s_{j_\ell}$ using only braid moves.

Our proof is by induction on ℓ , so assume we have proven the result for any pair of words of shorter length.

- (a) If $i_1 = j_1$, show we are done. Suppose from now on that $i_1 \neq j_1$. We abbreviate $i_1 = i, j_1 = j$ and $m_{ij} = m$.
- (b) Show that all m reflections in $\langle s_i, s_j \rangle$ are inversions of w. (Hint: Geometry!)

length
$$m$$

- (c) Show that there is a reduced word for w of the form $\overline{s_i s_j s_i} \overline{s_j} \cdots \overline{s_{k_{m+1}}} s_{k_{m+2}} \cdots \overline{s_{k_\ell}}$.
- (d) Conclude the proof.
- 5. This problem describes a different representation of A_{n-1} from the one on Problem Set 2.

Let $n \geq 3$ be a positive integer. Let V be the vector space of sequences $(a_i)_{i \in \mathbb{Z}}$ such that $a_{i+n} - a_i$ is a constant independent of i. Let \tilde{A}_{n-1} act on V by $w(a)_i = a_{w^{-1}(i)}$.

- (a) Choose a basis for V, and write the matrices of s_1, s_2, \ldots, s_n in your basis.
- (b) Give explicit vectors $\alpha_i \in V$ and $\alpha_i^{\vee} \in V^{\vee}$ such that $s_i(x) = x \langle \alpha_i^{\vee}, x \rangle \alpha_i$. Choose your signs such that $\langle \alpha_i^{\vee}, \rangle$ is positive on the point $x_i = i$.
- (c) Compute the Cartan matrix A_{ij} = ⟨α[∨]_i, α_j⟩.
 Once again, let D = {x ∈ V[∨] : ⟨x, α_i⟩ ≥ 0, 1 ≤ i ≤ n}.
 Let V
 be the quotient of V by the vector space of constant sequences. Let V
 be the affine subspace a_{i+n} = a_i + 1 of V
 . Note that dim V
 = n − 1, which means we can draw it for n = 3. I'll write D
 for the image of D in V
 and D
 for the intersection D
 ∩ V
 .
- (d) For n = 3, draw \bar{D}_1 , $s_1\bar{D}_1$, $s_2\bar{D}_1$, $s_3\bar{D}_1$, $s_1s_2\bar{D}_1$, $s_2s_1\bar{D}_1$ and $s_1s_2s_1\bar{D}_1$ inside \bar{V}_1 . Draw the hyperplanes fixed by s_1 , s_2 , s_3 .
- (e) Show that $\bar{V}_1 = \bigcup_{w \in \tilde{A}_{n-1}} w \bar{D}_1$.