Problem Set 5: Due Friday, October 11

See the course website for homework policy.

- 1. Let C_n be the group of signed $n \times n$ permutation matrices for $n \geq 3$. I number the generators of C_n as s_1 , s_2, \ldots, s_n so that $m_{12} = 4$ and $m_{23} = m_{34} = \cdots = m_{(n-1)n} = 3$. Let G be $C_n \ltimes \mathbb{Z}^n$ with C_n acting on \mathbb{Z}^n by these matrices; we consider G as a group of Euclidean symmetries of \mathbb{R}^n . In this problem, we will play with subgroups of G to get experience with Euclidean symmetry groups.
 - (a) Show that G is generated by affine reflections. Is it \tilde{C}_n or \tilde{B}_n ?
 - (b) Let G_1 be the subgroup $D_n \ltimes \mathbb{Z}^n$ of $C_n \ltimes \mathbb{Z}^n$. Show that G_1 is not generated by affine reflections.
 - (c) Let G_2 be the subgroup of G_1 generated by affine reflections. Show that G_2 is $D_n \ltimes \Lambda$ for a sublattice Λ of \mathbb{Z}^n and describe Λ explicitly.
 - (d) Let $\chi : C_n \to \{\pm 1\}$ be the unique character with $\chi(s_1) = 1$ and $\chi(s_2) = \chi(s_3) = \cdots = \chi(s_n) = -1$. Let G_3 be the subset of G consisting of pairs $(w, (a_1, \ldots, a_n))$ where $\chi(w) = (-1)^{\sum a_j}$. Show that G_3 is a subgroup of G.
 - (e) Construct a short exact sequence $1 \to \Lambda \to G_3 \to C_n \to 1$ where Λ is a free rank \mathbb{Z} -module with a C_n action, and show that this sequence is not semidirect. (Hint: Find an order 2 element in C_n that doesn't lift to an order 2 element of G_3 .)
- 2. Let W be a finite crystallographic Coxeter group with a chosen crystallographic root system of rank n. Let \tilde{W} be the affine Coxeter group $W \ltimes \mathbb{Z}\langle \alpha_i^{\lor} \rangle$. Recall that the affine hyperplane arrangement is the arrangement of hyperplanes $\{x \in V^{\lor} : \langle x, \beta \rangle = k\}$ for $\beta \in \Phi$ and $k \in \mathbb{Z}$.

Let D be the fundamental domain in this hyperplane arrangement.

- (a) Show that every region of the hyperplane arrangement is of the form $wD + \gamma^{\vee}$ for precisely one $w \in W$ and $\gamma^{\vee} \in \mathbb{Z}\langle \alpha_i^{\vee} \rangle$.
- (b) Let Π be the parallelepiped $\{x \in V^{\vee} : 0 \leq \langle x, \alpha_i \rangle \leq 1\}$ for $1 \leq i \leq n$. Let M be the number of regions into which the affine hyperplane arrangement divides Π . Show that the index $[\mathbb{Z}\langle \alpha_i \rangle^{\vee} : \mathbb{Z}\langle \alpha_i^{\vee} \rangle]$ is equal to $\frac{|W|}{M}$.
- (c) The domain D is a simplex with walls $\{x \in V^{\vee} : \langle x, \alpha_i \rangle = 0\}$ for $1 \leq i \leq n$ and one additional wall $\{x \in V^{\vee} : \langle x, \theta \rangle = 1\}$ for some root θ . Let $\theta = \sum c_i \alpha_i$. Show that $M = \frac{\operatorname{Vol}(\Pi)}{\operatorname{Vol}(D)} = n!c_1c_2\cdots c_n$.
- (d) Multiplying the formulas above gives $|W| = n!c_1 \cdots c_n [\mathbb{Z}\langle \alpha_i \rangle^{\vee} : \mathbb{Z}\langle \alpha_i^{\vee} \rangle]$. Check this formula in type \tilde{A}_n .
- 3. For a Coxeter group W, put $W(q) = \sum_{w \in W} q^{\ell(w)}$. The combinatorics of this generating function is a fascinating topic we won't have time for, so we glimpse it here.

In this problem, we derive a recursion for W(q) in terms of parabolic subgroups. We recall the notation W_I for the parabolic subgroup and ${}^{I}W = \{w \in W : s_i \text{ is a left ascent of } w \text{ for all } i \in I\}$ from Problem Set 4. We write s_1, s_2, \ldots, s_n for the simple generators of W and $[n] = \{1, 2, \ldots, n\}$.

(a) Show that

$$W_I(q) \cdot \left(\sum_{w \in {}^I W} q^{\ell(w)}\right) = W(q)$$

(b) Show that

$$\sum_{I\subseteq[n]}(-1)^{n-|I|}\sum_{w\in^{I}W}q^{\ell(w)} = \begin{cases} q^{\ell(w_0)} & W \text{ finite} \\ 0 & W \text{ infinite} \end{cases}.$$

- (c) Combine the two parts above to give a recursion for W(q) in terms of $W_I(q)$ for $I \subsetneq [n]$, and show that W(q) is always a rational function of q.
- (d) Use the above formula to compute $\sum_{w \in \tilde{A}_2} q^{\ell(w)}$. You may take as known that $\sum_{w \in A_2} q^{\ell(w)} = 1 + 2q + 2q^2 + q^3$.