Problem Set 6: Due Friday, October 25

See the course website for homework policy.

- 1. Recall that a lattice is a partially ordered set P where any two elements x and y have a unique least upper bound $x \lor y$ and greatest lower bound $x \land y$. Verify that, in any lattice, the following equalities hold:
 - (a) \lor and \land are commutative and associative.

(b) $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$.

- (c) We have $x \lor y = y$ if and only if $x \land y = x$
- 2. Let L be a set with binary operations \lor and \land which are commutative and associative and obey the relations $x \lor (x \land y) = x$ and $x \land (x \lor y) = x$. In this problem, we will show that L is a lattice.
 - (a) Show that $x \lor x = x$ and $x \land x = x$.
 - (b) Show that $x \lor y = y$ if and only if $x \land y = x$.
 - (c) Define $x \leq y$ if $x \vee y = y$. Show that \leq is a partial order.
 - (d) Show that \lor and \land are the meet and join for this partial order.
- 3. In this question, you may assume that the type A weak order is a lattice.
 - (a) Embed B_n into A_{2n-1} in the usual way. Show that B_n is closed under the lattice operations \vee and \wedge of A_n . Deduce that B_n is a lattice.
 - (b) Embed D_n into B_n in the standard way. Show that D_n is **not** closed under the lattice operations of B_n .
- 4. The point of this question is to prove by hand that weak order on S_n is a lattice. Given $w \in S_n$, let G_w be the directed graph with vertex set $[n] := \{1, 2, ..., n\}$ and with an edge $i \to j$ if (ij) is an inversion of w, with i < j.

Let u and $v \in S_n$. We define an antisymmetric relation \prec_{uv} on $[n] = \{1, 2, \ldots, n\}$ as follows: For i < j in S_n , put $i \succ_{uv} j$ if there is a directed path from i to j through $G_u \cup G_v$, and put $i \prec_{uv} j$ otherwise. Here $G_u \cup G_v$ is just the directed graph with vertex set [n] whose edges are the union of G_u and G_v .

- (a) Show that \prec_{uv} is acyclic relation. Let $u \cup v$ be the permutation whose inversion set is those (ij) with i < j and $i \succ_{uv} j$.
- (b) Show that $u \cup v$ is the least upper bound of u and v.
- (c) Explain how similarly to find the greatest lower bound of u and v.