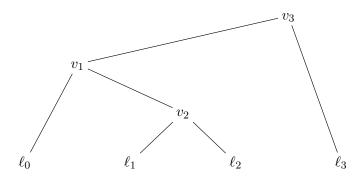
Problem Set 7: Due Friday, November 1

See the course website for homework policy.

- 1. Read the course notes from October 18 to November 30. Suggest something that can be improved, or a question they raise.
- 2. This question fills in the details of how permutahedra work. Take a Coxeter group and Cartan matrix as usual, and take roots and coroots that pair by the Cartan matrix such that both $(\alpha_1, \alpha_2, \ldots, \alpha_n)$ and $(\alpha_1^{\vee}, \alpha_2^{\vee}, \ldots, \alpha_n^{\vee})$ are linearly independent. Choose $\rho \in V$ such that $\langle \rho, \alpha_i^{\vee} \rangle > 0$ for all *i* (since the α_i^{\vee} are linearly independent, this is possible). Let $X = \{w\rho\}_{w \in W}$ and let *P* be the convex hull of *X*. The polytope *P* is called the *W*-permutahedron.
 - (a) Show that $\rho w\rho$ is a positive linear combination of $\{\beta_t : t \in inv(w)\}$. Hint: Induction on $\ell(w)$.
 - (b) Let $\theta \in V^{\vee}$, so $\langle \theta, \rangle$ is a linear function on P. Show that this function achieves its minimum at ρ , and nowhere else, if and only if $\theta \in D^{\circ}$. (Note that D° is nonempty since the α_i are linearly independent.)
 - (c) Show that $\langle \theta, \rangle$ achieves its minimum at $w\rho$, and nowhere else, if and only if $\theta \in wD^{\circ}$.
 - (d) Let W_I be a standard finite parabolic subgroup of W and let D_I° be the corresponding face of D. Let P_I be the convex hull of $\{w\rho : w \in W_I\}$. Show that $\langle \theta, \rangle$ achieves its minimum on P_I and nowhere else if and only if $\theta \in D_I^{\circ}$. Analogously, show that $\langle \theta, \rangle$ achieves its maximum on uP_I and nowhere else if and only if $\theta \in uD_I^{\circ}$.
 - (e) Take the standard root system for B_3 , with simple roots e_1 , $e_2 e_1$ and $e_3 e_2$. Sketch the three dimensional polytope P.
 - (f) The previous example is for a finite Coxeter group, which is the usual context in which permutahedra are considered. But we can handle infinite groups. Consider the Cartan matrix $\begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ with roots $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$ and co-roots $\begin{bmatrix} 1 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$. Take $\rho = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Show that X is the set of vectors of the form $\begin{bmatrix} -(k-1)k \\ -k(k+1) \\ 1 \end{bmatrix}$ for $k \in \mathbb{Z}$, and sketch the infinite "polytope" P.

The final question is on the back.

3. This question fills in the details of Loday's construction. Let T_n be the set of planar binary trees with leaves $\ell_0, \ell_1, \ldots, \ell_n$. We draw the leaves at the bottom of the tree from left to right. We number the internal vertices of the tree as v_1, v_2, \ldots, v_n from left to right, so that v_k is to the right of $\ell_0, \ell_1, \ldots, \ell_{k-1}$ and to the left of $\ell_k, \ell_{k+1}, \ldots, \ell_n$.



Given a tree T, define the integer vector c(T) where $c(T)_i$ is the number of ordered pairs (j, k)such that ℓ_j is a left descendant of v_i and ℓ_k is a right descendant of v_i . In the example above, c(T) = (2, 1, 3). Let Assoc_n be the convex hull of the vectors c(T) for $T \in T_n$.

Given $(x_1, \ldots, x_n) \in \mathbb{R}^n$ with the x_i distinct, let $T(\vec{x})$ be the unique binary tree which can be drawn such that v_i is at height x_i . We will first be showing that $\langle \vec{x}, \rangle$ is maximized on Assoc_n at the vertex $c(T(\vec{x}))$.

- (a) Show that there is a continuous function $\phi : \mathbb{R}^n \to \mathbb{R}$ such that, if \vec{x} is a vector with distinct entries, we have $\phi(\vec{x}) = \langle \vec{x}, c(T(\vec{x})) \rangle$.
- (b) Let \vec{x} and \vec{y} be two vectors in \mathbb{R}^n so that, for any $t \in \mathbb{R}$, the vector $t\vec{x} + (1-t)\vec{y}$ has at most two equal entries. Show that the restriction of ϕ to the line segment from \vec{x} to \vec{y} is convex. (Hint: This is a piecewise linear function; describe what happens at its corners.)
- (c) Let \vec{x} be a vector in \mathbb{R}^n with distinct entries and let U be a tree other than $T(\vec{x})$. Show that $\langle \vec{x}, c(T(\vec{v})) \rangle > \langle \vec{x}, c(U) \rangle$. Hint: Choose a generic \vec{y} such that $U = T(\vec{y})$ and consider what happens to ϕ on the line segment from \vec{x} to \vec{y} .
- (d) Let x be a vector in Rⁿ. Show that ⟨x, ⟩, on Assoc_n, is maximized solely at c(T(x)). This in particular shows that every c(T) is a vertex of Assoc_n.
 We now know that the normal fan to Assoc_n is given by coarsening the S_n hyperplane arrangement as described in class.
- (e) Let T be a binary tree and let Cone(T) be the cone of all \vec{x} with $T(\vec{x}) = T$. Show that Cone(T) and Cone(U) border along a codimension 1 face if and only if c(T) and c(U) differ by a single association.