Problem Set 8: Due Friday, November 8

See the course website for homework policy.

- 1. Please T_EX up a solution to your assigned problem and send it to Professor Speyer.
- 2. The following pictures show the Hasse diagrams of some small lattices. In each case, determine the slide equivalence classes on Covers(L), and the forcing relations between them:

- 3. Let W be a finite Coxeter group with simple generators s_1, s_2, \ldots, s_n . For $w \in W$, let $D(w) = \{k : s_k \text{ is a left descent of } w\}$. Let $2^{[n]}$ be the lattice of subsets of $\{1, 2, \ldots, n\}$, with the usual order. Show that $w \mapsto D(w)$ is a lattice homomorphism $W \to 2^{[n]}$.
- 4. (a) Show that an element of S_n is join irreducible if and only if it has exactly one right descent.
 (b) Show that there are 2ⁿ n 1 join irreducible elements in S_n.
- 5. This question shows that trying to define something like weak order for hyperplane arrangements not coming from root systems can lead to problems. Let R be the following subset of \mathbb{R}^4 :

Define a subset I of R to be *convex* if there is a $\theta \in \mathbb{R}^4$ such that $I = \{\beta \in R : \langle \theta, \beta \rangle > 0\}$. We treat the set of closed sets as a poset under containment. In this problem, we will show that this poset is not a lattice.

(a) Show that the following sets are closed:

does not exist in the poset of convex sets.