Problem Set 9: Due Friday, November 15

See the course website for homework policy.

- 1. Please read the course notes for November 1-13 and suggest a question or something that could be improved.
- 2. This problem checks some lemmas that we omitted from our discussion of doubling. Let L be a lattice and I = [a, b] an interval of L. Define the doubling L[I] to have the ground set $(L \setminus I) \sqcup (I \times \{0, 1\})$. Let $\pi : L[I] \to L$ be the obvious map. Define a partial order on L[I] by setting $x \leq y$ if
 - $\pi(x) \leq \pi(y)$ and
 - in the case that $x = (\pi(x), i)$ and $y = (\pi(y), j)$ are both in *I*, we additionally require that $i \leq j$.
 - (a) Check that L[I] is a lattice.
 - (b) Check that π is a map of lattices.
 - (c) Let L be finite. Check that the join irreducible elements of L[I] are
 - Join irreducible elements j of L which are not in I
 - Pairs (j, 0), for j a join irreducible element of L which is in I
 - The element (a, 1).
- 3. This question investigates two quotients of S_4 weak order which are useful as counter-examples.
 - (a) Consider the covers (2143, 2413) and (1423, 4123). Compute the slide equivalence class of each, and show that neither forces any covers outside of its slide equivalence class. Let L_1 and L_2 be the quotients of S_4 where we contract the slide equivalence classes of (2143, 2413) and (1423, 4123) respectively.
 - (b) Draw the coarsening of the S_4 hyperplane arrangement corresponding to L_1 and L_2 . (You may want to download the stereographic projection of A_3 from the course website.) Note that L_1 has a non-simplical cone.
 - (c) Show that none of the right inverses of $\pi: S_4 \to L_2$ is a map of lattices.