We now know that, if X is a totally nonnegative, invertible, $n \times n$ matrix then X has a unique LDU factorization where L is a totally nonnegative element of N_{-} , D is a positive diagonal matrix and U is a totally nonnegative element of N_{+} .

Intersecting two Bruhat decompositions of GL_n , we obtain the decomposition of GL_n into *double Bruhat cells*:

$$\operatorname{GL}_n = \bigsqcup_{u,v} \left(B_+ u B_+ \cap B_- v B_- \right)$$

Problem 15.1. Show that, if $X \in B_+ u B_+ \cap B_- v B_-$, then $L \in B_+ u B_+ \cap N_-$ and $U \in B_- v B_- \cap N_+$.

Problem 15.2. Show that $(L, D, U) \mapsto LDU$ is a diffeomorphism

$$(B_+uB_+\cap N_-)_{\geq 0} \times \mathbb{R}^n_{>0} \times (B_-vB_-\cap N_+)_{\geq 0} \longrightarrow (B_+uB_+\cap B_-vB_-)_{\geq 0}$$

Here the subscript ≥ 0 indicates "totally nonnegative" in each case.

Consider any product where each term is of the form $x_i(\mathbb{R}_{>0})$, $y_j(\mathbb{R}_{>0})$, $\delta_k(\mathbb{R}_{>0})$ and where each of $\delta_1(\mathbb{R}_{>0})$, $\delta_2(\mathbb{R}_{>0})$, ..., $\delta_n(\mathbb{R}_{>0})$ appears at least once. Let i_1, i_2, \ldots, i_M be the sequence of subscripts of the x_i factors and let j_1, j_2, \ldots, j_N be the sequence of subscripts of the y_j factors. Suppose that $s_{i_1}s_{i_2}\cdots s_{i_M}$ is a reduced word for u and that $s_{j_1}s_{j_2}\cdots s_{j_N}$ is a reduced word for v.

Prove the following result of Fomin and Zelevinsky:

Problem 15.3. Show that the product gives a diffeomorphism $\mathbb{R}_{>0}^{\ell(u)+\ell(v)+n} \longrightarrow (B_+uB_+ \cap B_-vB_-)_{\geq 0}$.