WORKSHEET 1: TWO EXAMPLES

Let X be an $m \times n$ matrix. Let $I \subseteq \{1, 2, ..., m\}$ and $J = \subseteq \{1, 2, ..., n\}$ be two subsets of size k; we write $\Delta_J^I(M)$ for the $k \times k$ determinant $\det(M_{ij})_{i \in I, j \in J}$, where we keep the rows and columns in the same order as in the big matrix. For example,

$$\Delta_{24}^{13} \left(\begin{bmatrix} M_{11} & M_{12} & M_{13} & M_{14} \\ M_{21} & M_{22} & M_{23} & M_{24} \\ M_{31} & M_{32} & M_{33} & M_{34} \end{bmatrix} \right) = \det \begin{bmatrix} M_{12} & M_{14} \\ M_{32} & M_{34} \end{bmatrix}.$$

By convention, $\Delta_{\emptyset}^{\emptyset}(M) = 1$.

We say that a matrix M is *totally nonnegative* if all of the $\Delta_J^I(M)$ are ≥ 0 .

Problem 1.1. Stratify the space of 2×2 totally nonnegative matrices according to which of the minors Δ_J^I are zero. How many strata of each dimension (0, 1, 2, 3 and 4) do you obtain?

Problem 1.2. Consider the space of 2×2 totally nonnegative matrices $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with a + b + c + d = 1; this lives in \mathbb{R}^3 , so we can draw it. Sketch this space.

Problem 1.3. Consider the space of totally nonnegative matrices of the form $\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}$. Again, stratify this space according to which are zero. How many strata of each dimension do you obtain?

Problem 1.4. Consider the space of totally nonnegative matrices of the form $\begin{bmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{bmatrix}$ with x + y + z = 1. This lives in \mathbb{R}^2 , so we can draw it. Sketch this space.