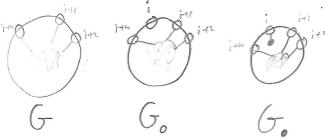
WORKSHEET 20: LOLLIPOPS

Let G be a planar bipartite graph, embedded in a disc D, such that all the vertices on $\partial(D)$ are white. We'll write $\partial(G)$ for these white boundary vertices, W_0 for the interior white vertices and B for the black vertices. Let $\#(W_0) = m, \#(B) = m + k$ and $\#(\partial(G)) = n$, and fix a labeling of $\partial(G)$ by [n] in counterclockwise order.

Let G_{\circ} and G_{\bullet} be the graphs obtained from G as shown in the figures below. We number the new vertex *i* and fit the other numbers around it as shown.



This operation is sometimes known as *adding a lollipop*.

So G_{\circ} and G_{\bullet} have types (k, n + 1) and (k + 1, n + 1). Let f, f_{\circ} and f_{\bullet} be the corresponding affine permutations.

Problem 20.1. Show that $f_{\circ}(i) = i$ and $f_{\bullet}(i) = i + (n + 1)$. Show that, for $i + 1 \leq j \leq i + n$, we have $f_{\circ}(j) = f_{\bullet}(j) = f(j)$.

Problem 20.2. Let f, f_{\circ} and f_{\bullet} be bounded affine permutations as above. Show that there are isomorphisms between the regions of G(k, n), G(k, n + 1) and G(k + 1, n + 1) with bounded affine permutations f, f_{\circ} and f_{\bullet} . More specifically, if M, M_{\circ} and M_{\bullet} are corresponding matrices, we should have $\Delta^{I}(M) = \Delta^{I}(M_{\circ}) = \Delta^{I \cup \{i\}}(M_{\bullet})$ for $I \subseteq \{i + 1, \dots, i + n\}$; we should have $\Delta^{J}(M_{\circ}) = 0$ if $i \in J$ and $\Delta^{K}(M_{\bullet}) = 0$ if $i \notin K$.