First, a warm up problem:

Problem 8.1. Suppose that

$$w = \begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \\ 1 & & \\ 1 & & \end{bmatrix}.$$

What is $N_-w \cap wN_+$? What open subset of it is $N_+B_- \cap (N_-w \cap wN_+)$?

Recall that we would like to know that $N_+ \cap B_- w B_-$ is a manifold of dimension $\ell(w)$.

Problem 8.2. Show that

$$N_+ \cap B_- w B_- \cong (N_+ B_- \cap B_- w B_-)/B_-.$$

Recall that every element of B_-wB_- has a unique factorization in the form $(N_- \cap wN_+w^{-1})wB_-$ or, equivalently, $(N_-w \cap wN_+)B_-$.

Problem 8.3. Show that

$$(N_+B_- \cap B_-wB_-)/B_- \cong N_+B_- \cap (N_-w \cap wN_+).$$

Problem 8.4. Show that $N_+B_- \cap (N_-w \cap wN_+)$ is an open subset of $N_-w \cap wN_+$, and $N_-w \cap wN_+ \cong \mathbb{R}^{\ell(w)}$.