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September 1 : Examples

We write [m] = {1, 2, . . . ,m}. Given an m × n matrix M , and subsets I =⊆ [m] and
J ⊆ [n] with #(I) = #(J), we define ∆I

J(M) = det(Mij)i∈I, j∈J , where we keep the elements
of I and the elements of J in the same order. For example,

∆13
25(M) = det

[
M12 M15

M32 M35

]
.

The ∆I
J(M) are called the minors of M .

We say that M is totally positive if all the ∆I
J(M) are positive, and totally nonneg-

ative if all the ∆I
J(M) are nonnegative. We spent class working through two key examples:

Example 1: A 2× 2 matrix [ w x
y z ] is totally nonnegative if w, x, y, z and wz − xy are all

nonnegative. We can break this space up into strata according to which of these are positive
and which are zero:

0 dimensional strata: [ 0 0
0 0 ].

1 dimensional strata: [ ∗ 0
0 0 ], [ 0 ∗

0 0 ], [ 0 0
∗ 0 ], [ 0 0

0 ∗ ].
2 dimensional strata: [ ∗ ∗0 0 ], [ 0 ∗

0 ∗ ], [ 0 0
∗ ∗ ], [ ∗ 0

∗ 0 ], [ ∗ 0
0 ∗ ].

3 dimensional strata: [ ∗ ∗0 ∗ ], [ ∗ 0
∗ ∗ ], {[ w x

y z ] : wz = xy}.
4 dimensional strata: {[ w x

y z ] : wz > xy}.
In order to visualize this, we intersect with the hyperplane w+x+ y+ z = 1 to cut all the

dimensions by 1. The 2-dimensional strata are thus cut down to line segments, and the first
two of the 3-dimensional strata are cut down to triangles. These two triangles fit together
as shown below:

[ 1 0
0 0 ] [ 0 1

0 0 ]

[ 0 1
0 0 ] [ 0 0

0 1 ]

The closure of the remaining 3-dimensional stratum cuts the hyperplane in what is topo-
logically a square; we can parametrize it as{[

tu t(1− u)
(1− t)u (1− t)(1− u)

]
: 0 ≤ t, u ≤ 1

}
.

The boundary of this square is glued to the four edges surrounding the two triangles, forming
a sphere. The largest stratum fulls in the interior of the sphere.

Example 2: A matrix
[

1 x z
0 1 y
0 0 1

]
is totally nonnegative if and only if 0 ≤ x, y, z and xy ≥ z.

The strata of this space are

0-dimensional strata:
[

1 0 0
1 0

1

]
1-dimensional strata:

[
1 ∗ 0

1 0
1

]
,
[

1 0 0
1 ∗

1

]
2-dimensional strata:

[
1 ∗ 0

1 ∗
1

]
,
[

1 x xy
1 y

1

]
3-dimensional strata:

[
1 x z
0 1 y
0 0 1

]
: xy > z > 0, x, y > 0.

If we slice with x + y + z = 1, we get the equations x + y ≤ 1, xy + x + y ≥ 1, which we
plot below:
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Here are some things to notice:

• Each stratum, topologically, is an open ball. The closure of each stratum is a closed
ball. In other words, these spaces are regular CW complexes.
• Algebraically, each stratum is rational. In fact, each stratum can be parametrized

polynomially by Rd
>0 for the appropriate d.

September 3 : The Gessel-Lindström-Viennot Lemma

We would like to find parametrizations of the various spaces of totally nonnegative matrices
we have seen. One way to do this is to multiply simpler totally positive matrices, since you
will verify on Problem Set 1 that the product of two totally nonnegative matrices is totally
nonnegative. For example, we claim without proof that1 x 0

1 0
1

1 0 0
1 y

1

1 z 0
1 0

1

 x, y, z > 0

is a bijective parametrization from R3
>0 to the space of 3 × 3 matrices of the form

[
1 ∗ ∗

1 ∗
1

]
with all minors positive, except those that are forced to be zero by the upper triangularity.

A second way to do this, which we will explore today, is using directed graphs. Let G be
a finite acyclic directed graph. Let S and T be two subsets of the vertices – sources and
targets – and define a matrix M(G) whose rows are indexed by S and whose columns are
indexed by T , by

M(G)st = #{directed paths from s to t }.
Better that that, let’s attach a weight w(e) to each edge. For a directed path γ = (• e1−→
• e2−→ • · · · ek−→ •), we set w(γ) =

∏k
j=1w(ej). Then we define

M(G)st =
∑
s
γ
 t

w(γ).

So our previous formula is the case of taking all weights w(e) equal to 1.
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Note that our sum is finite because the graph is acyclic.

Example. Let G be

s1
// • //

x

��

• // t1

s2
// • // • //

y

OO

t2

.

Here the unlabeled edges have weight 1. Then M(G) is[
1 + xy x
y 1

]
.

When the weights w(e) are positive, each matrix entry is clearly positive. We want more
than this; we want to get all the matrix minors to be positive. We can achieve this using:

Theorem (Gessel-Lindström-Viennot). Let S = {s1, s2, . . . , sk} and T = {t1, t2, . . . , tk}.
Suppose that G is a planar graph and that S and T occur on the boundary of the outer face,
in order s1, s2, . . . , sk, tk, . . . , t2, t1. Then

∆I
J(M) =

∑
s1
γ1 t1, s2

γ2 t2, ··· , sk
γk tk, γj are vertex disjoint

w(γ1)w(γ2) · · ·w(γk)

where the sum is over k-tuples of vertex disjoint paths (γ1, γ2, · · · , γk) where γr is a path
from sr to tr.

The diagram below shows the required geometry of the graph G, and the connectivity of
the paths.

•
•
•

•
•
•

s1

s2

s3

t1

t2

t3

Proof. If we expand the determinant directly, we get

∆I
J(M) =

∑
σ∈Sk

(−1)σ
∑

s1
β1 tσ(1), s2

β2 tσ(2), ··· , sk
βk tσ(k)

w(β1)w(β2) · · ·w(βk).

Here the outer sum is over the symmetric group Sk, and we are not imposing that the paths
are vertex disjoint.

We want to show that all terms which come from paths that are not vertex disjoint cancel
each other. In other words, consider the set of k-tuples of paths (β1, β2, . . . , βk) from S to T
which are not vertex disjoint. We want to construct a bijection from this set to itself which
will switch the sign of the permutation.

There are lots of ways to do this; here is one. Choose a total ordering on the vertices of G,
so that u comes before v if we have an edge u −→ v. Given a k-tuple (β1, β2, . . . , βk), let v be
the first vertex on more than one path. Since it is the first such vertex, the incoming edges
to v are distinct. Choose a total order of the edges, and let e and f be the first two edges of⋃
βj coming into v; let them be on paths βi and βj. Make new paths β′k by switching paths

βi and βj before vertex v. This switches the sign of the permutation σ.
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We have thus cancelled all k-tuples of crossing paths, and we have

∆I
J(M) =

∑
σ∈Sk

(−1)σ
∑

s1
γ1 tσ(1), ··· , sk

γk tσ(k), γj are vertex disjoint
w(γ1)w(γ2) · · ·w(γk).

But now our assumptions on the topology of G imply that the only connectivity we can have
with disjoint paths is si → ti, so this simplifies to

∆I
J(M) =

∑
s1
γ1 t1, s2

γ2 t2, ··· , sk
γk tk, γj are vertex disjoint

w(γ1)w(γ2) · · ·w(γk) �

Corollary. Let the graph G be as in the Gessel-Lindström-Viennot lemma and assume that
all of the weights w(e) are positive. Then the matrix M(G) is totally nonnegative.

We remark on how this construction relates to our earlier discussion of multiplying matri-
ces: If we have a graph G with sources S and targets T , and another graph H with sources
T and targets U , we can join them together to make a larger graph GH as shown:

•
•
•

•

•

•

•

•
•
•
•

s1

s2

s3

t1

t2

t1

t2

u1

u2

u3

u4

G H

Then M(GH) = M(G)M(J).

Proof. Take s ∈ S and u ∈ U . Any path from s to u through GH must cross through exactly
one of the elements of T . To the left of that crossing, it is a path from s to t through G; to
the right it is a path from t to u through H. And, consversely, given a path s→ t through
G and a path t → u through H, we can concatenate them to give a path s → u through
GH. So

M(GH)su =
∑
t∈T

M(G)stM(H)tu,

which is the formula for matrix multiplication. �

For example, the 3× 3 matrix product from the start of lecture can be understood as the
graph

s1
// • //

x

��

• //

z

��

t1

s2
// • // • //

y

��

• // t2

s3
// • // t3

.

Our goal for the next week will be to generalize the claim from the start of lecture to the
n×n case. Namely, we will show that the graph below, with n horizontal lines, parametrizes
n × n upper triangular matrices with 1’s on the diagonal and all the “obvious” minors
positive.
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• • • • •

• • • • •• • • •

• • • •• • •

• • •• •

• ••

•

1

2

3

4

5

6

1

2

3

4

5

6

t1 t3 t6 t10 t15

t2 t5 t9 t14

t4 t8 t13

t7 t12

t11

Figure 1. The graph to parametrize upper triangular totally positive matrices

September 15 : Parametrizing totally positive unipotent matrices – Part 1

Consider the n× n unipotent upper triangular matrices, which are matrices of the form
1 ∗ · · · ∗

1 · · · ∗
. . .

...
1

 .
Given I = {i1 < · · · < ik} and J = {j1 < · · · < jk}, we would like to know whether or
not it is even possible for the minor ∆I

J(M) to be nonzero for some n × n unipotent upper
triangular matrix M .

First, suppose there is an index ` such that j` < i`. Let M be an arbitrary unipotent upper
triangular matrix. Upon inspection, we find that within the first ` columns of (Mij)i∈I, j∈J ,
nonzero entries can only appear in the first `− 1 rows. This implies that first ` columns of
(Mij)i∈I, j∈J are linearly dependent, so det((Mij)i∈I, j∈J) = ∆I

J(M) = 0.
On the other hand, if i` ≤ j` for all 1 ≤ ` ≤ k, then we can choose M to be the unipotent

upper triangular matrix satisfying

Mij =

{
1, if i = j or (i, j) = (i`, j`) for some 1 ≤ ` ≤ k;

0, otherwise.

Then (Mij)i∈I,,j∈J is a lower triangular matrix with 1’s on its diagonal, so ∆I
J(M) = 1.

This shows that the natural notion of total positivity for unipotent upper triangular ma-
trices is given by the requirement ∆I

J(M) > 0 for all I = {i1 < · · · < ik} and J = {j1 <
· · · < jk} satisfying i` ≤ j` for all 1 ≤ ` ≤ k. Our goal is now to prove that these matrices
are parameterized by weighted graphs as in Figure 1 with positive real edge weights. More
precisely, we have the following theorem.
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Theorem. Let the weights of the above graph range over R(n2)
>0 . This gives a homeomorphism

between R(n2)
>0 and the space of n × n unipotent upper triangular matrices M for which

∆I
J(M) > 0 whenever i` ≤ j` for all 1 ≤ ` ≤ k.

Start of proof. We already know by the Gessel–Lindström–Vienot lemma that this map is
well-defined in the sense that every matrix M in its image satisfies ∆I

J(M) > 0 whenever
i` ≤ j` for all 1 ≤ ` ≤ k. In order to prove that it is a bijection, we construct its inverse
explicitly.

Suppose M is such that ∆I
J(M) > 0 whenever i` ≤ j` for all 1 ≤ ` ≤ k. Choose k ∈ [n]

and a ∈ [n − k]. Let i` = a + ` and j` = n − k + ` for all 1 ≤ ` ≤ k. There is only one
collection of vertex-disjoint paths from the set I of sources to the set J of sinks, so the minor
∆I
J(M) is a monomial formed by taking the product of some of the edge weights tr. We can

now solve for each edge weight as a quotient of products of minors of M . For example, in
the above graph (with n = 5), we have

∆345
456(M) = t11t12t13 and ∆45

56(M) = t11t12,

so t13 =
∆345

456(M)

∆45
56(M)

. Similarly,

∆234
456(M) = t7t8t9t11t12t13 and ∆34

56(M) = t7t8t11t12,

so t9 =
∆234

456(M)

∆34
56(M) · t13

=
∆234

456(M)∆45
56(M)

∆34
56(M)∆345

456(M)
. Every one of the minors involved in one of these

expressions for an edge weight tr has a column set of the form {n − k + 1, . . . , n} for some
k. By our hypothesis on the positivity of the minors of M , the resulting edge weights tr are
all positive.

At this point, we have constructed smooth maps from R(n2) to the locus of totally positive
unipotent matrices, and vice versa. And we have chosen our formula so that the composition

R(n2) −→ (totally positive unipotent matrices) −→ R(n2) is the identity. To complete our
proof, we must show that the composition in the other order is also the identity. �

September 17 : Parametrizing totally positive unipotent matrices – part 2

Last time we constructed a polynomial map f from R(n2)
>0 to the space of totally positive

unipotent matrices.

Remark. This construction could be rephrased as follows. The map

R(n2)
>0 → {positive unipotent n× n matrices}

gives rise to the following map of algebraic varieties

G(n2)
m → Un,

where Un is the unipotent radical of the group GLn. (Both domain and range are algebraic
groups, but this is not a map of algebraic groups.) This map could be seen as a torus chart
for the group Un. That is the first example of a cluster chart which would be discussed later
in the course.
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Reminder about the previous lecture. To prove the theorem about isomorphism of two
spaces we have constructed two maps:

• f : R(n2)
>0 → {positive unipotent n × n matrices} which assigns a positive matrix to

every set of parameters tii=1...(n2)
;

• g : {positive unipotent n × n matrices} → R(n2)
>0 which gives a bunch of ti’s from

minors of a positive unipotent matrix.

We proved that g◦f = id. Now, let us prove that f ◦g = id. We will give two conceptually
different proofs of this fact below.

“Brute force”. Consider an arbitrary positive unipotent matrix M . The matrix f ◦ g(M)

is also positive and unipotent. Also, all flush right minors
{

∆
a(a+1)...(a+k−1)
(n−k+1)...(n−1)n

}
of these two

matrices coincide. So the following lemma proves that the matrices M and f ◦g(M) coincide,
i.e., the equality f ◦ g = id holds.

Lemma. A positive unipotent n× n-matrix N can be recovered from the set of flush right

minors
{

∆(N)
a(a+1)...(a+k−1)
(n−k+1)...(n−1)n

}
.

Proof. We find entries Nij iteratively going from nth to 2nd column, and from lowest to
highest entries within each column.
nth column: the entriesN1n, . . . , Nn,n coincide with the flush right minors ∆(N)1

n, . . . ,∆(N)nn.

(n − 1)st column: to find the entry N(n−2)(n−1) consider the minor ∆(N)
(n−2)(n−1)
(n−1)n =

N(n−2)(n−1) · N(n−1)n − . . . . Next, N(n−3)(n−1) can be found from the ∆(N)
(n−3)(n−2)
(n−1)n =

N(n−3)(n−1) ·N(n−2)n − . . . .
In general, to find the N(n−i)(n−j) entry we use the minor

∆(N)
(n−i)...(n−i+j)
(n−j)...(n−1)n = N(n−i)(n−j) ·∆(N)

(n−i−1)...(n−i−1+j)
(n−j−1)...(n−1)n − . . . .

We emphasize that the coefficient ∆(N)
(n−i−1)...(n−i−1+j)
(n−j−1)...(n−1)n is positive, so we can divide by it,

and the iterative scheme does give values of the entries Nij. �

“Dimension count”. Firstly, both sets in question are open subsets of the space R(n2).

Here we use the fact that the space of unipotent matrices is isomorphic to R(n2).
Secondly, from the equality g ◦ f = id we see that the map f is injective. Also, from the

same equality we see that the differential Df is injective. So the map f is an open immersion.
Finally, because g ◦ f = id we see that f ◦ g restricted to the image of f is id. We have

now seen that g ◦ f is id on an open set (namely, the image of f). Since g ◦ f is real analytic
(in fact, given by rational functions), checking the equality g ◦ f = id on an open set shows
it everywhere.

Reflection on the proof. We can see that we actually proved a flush right statement.
Namely, we also proved that the space of all positive unipotent matrices coincides with the
space of unipotent matrices with positive flush right minors.

In other words , we replaced the exponential number of conditions on minors to the
polynomial number. Moreover, the later number is minimal, in the sense that it coincides
with the dimension of the space.

Analogous phenomena hold in a much general situations with positive spaces.
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September 22 : Introduction to the 0-Hecke monoid

Up to this point, we’ve let the content appear from nowhere. Let’s give some references
before we go on. The first big result in this direction is usually known as Fekete’s theorem:

Theorem (Fekete and Polya1). An m× n matrix is totally positive if both:

• ∆
{n−k,n−k+1,...,n}
I > 0

• ∆I
{n−k,n−k+1,...,n} > 0

for all consecutive blocks I = {a, a+ 1, . . . , a+ k}

The first source that does the unipotent case specifically is probably Lusztig “Total Positiv-
ity in Reductive Groups”, 1994. Our approach is close to Berenstein, Fomin, and Zelevinsky,
“Parametrizations of canonical bases and totally positive matrices”, 1996.

Products of Chevalley generartors. Let xi(t) = I + tei,i+1, where ei,j = eiej. These are
the upper triangular matricies with 1’s along the diagonal, and t in the (i, i + 1)st entry.
Since xi(t) is totally nonnegative, for t > 0, any product of xi(t)’s is totally nonnegative.

We have the following identities:

xi(R>0)xj(R>0) = xj(R>0)xi(R>0), |i− j| ≥ 2

xi(R>0)xi+1(R>0)xi(R>0) = xi+1(R>0)xi(R>0)xi+1(R>0)

xi(R>0)xi(R>0) = xi(R>0)

In the following proofs, we will make great use of the identity

ei,jek,l = δj,kei,l

where δj,k is the kronecker delta function, which is 1 if j = k and 0 otherwise.

For the first, we compute:

(I + tei,i+1)(I + sej,j+1) = I + tei,i+1 + sej,j+1 + 0 = (I + sej,j+1)(I + tei,i+1)

Note we can invert this map easily, just read off the (i, i + 1) and (j, j + 1) entries to
recover s and t.

For the second, we similarly find:

(I + sei,i+1)(I + tei+1,i+2)(I + uei,i+1) = I + (s+ u)ei,i+1 + tei+1,i+2 + stei,i+2

while:

(I + pei+1,i+2)(I + qei,i+1)(I + rei+1,i+2) = I + (p+ r)ei+1,i+2 + qei,i+1 + qrei,i+2

Observe that we can convert from one to the other by setting:

p = tu/(s+ u)

q = s+ u

r = st/(s+ u)

1M. Fekete, G. Polya, Uber ein Problem von Laguerre, Rend. C.M. Palermo 34 (1912) 89–120
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We can also recover s, t and u from the matrix using the method from last week, it’s
exactly a 3× 3 upper triangular block.

To see the last:
(I + tei,i+1)(I + sei,i+1) = I + (s+ t)ei,i+1

and we recall that every positive number is the sum of 2 positive numbers (and conversely).

The 0-Hecke monoid. We now turn to some combinatorial culture. The relations we’ve
just seen for xi’s are exactly those of the 0-Hecke monoid . If we fix n, the 0-Hecke monoid
has n− 1 generators ei, with relations:

eiej = ejei |i− j| ≥ 2

eiei+1ei = ei+1eiei+1

e2
i = ei.

So it follows from our computation above that, for each element ei1ei2 · · · eiN of the 0-Hecke
monoid, there is unique subset of the totally nonnegative unipotent matrices which are
parametrized by xi1(R>0)xi2(R>0) · · · xiN (R>0).

Example. Let n = 3. The 0-Hecke monoid has six elements: 1, e1, e2, e1e2, e2e1 and
e1e2e1 = e2e1e2.

This should seem familiar, we’ve recovered our stratification of upper triangular totally
non negative matrices from the first class.

We now introduce related algebraic structures to these. Not because we will use them,
but to ease us into the broader community.

First, one should recognize the similarity to the symmetric group, which has n− 1 gener-
ators si with relations

sisj = sjsi |i− j| ≥ 2

sisi+1si = si+1sisi+1

s2
i = 1

Note we’ve changed only the last relation, and suddenly it’s a group!
Then, the braid monoid, which is generated e1, . . . , en−1 with relations

eiej = ejei |i− j| ≥ 2

eiei+1ei = ei+1eiei+1

entirely omitting the last relation. One can also get the braid group by adjoining inverses.
One can see how all of these monoids would have a strong relation to Tits’ lemma as we saw
it in the homework. The relations we leave untouched are exactly the transformations that
go between reduced words.

Finally, we mention that the 0 in 0-Hecke is not decorative. In general there is a q-Hecke
algebra (or just Hecke algebra) with relations

eiej = ejei.(|i− j| ≥ 2

eiei+1ei = ei+1eiei+1

e2
i = (1− q)ei + q
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where q is a commuting indeterminant. Note that the 1-Hecke monoid is in fact the sym-
metric group algebra! One is free to leave q as a commuting indeterminant, or to assign it a
value from a ring.

Exercise. Verify that the two 2 dimensional subsets have disjoint images.

Next time we will discuss the size of the 0-Hecke monoid. The homeworks have already
given us a strong hint that words in the monoid correspond to reduced words in the symmetric
group.

September 24 : The 0-Hecke monoid continued

Continuing the previous lecture, we are aiming to prove the following theorem.

Theorem. There is a natural bijection between the 0-Hecke monoid, Hn, and the symmetric
group Sn. Namely, given w ∈ Sn, if si1si2 · · · siN is a reduced word for w, then we biject it
to ei1ei2 · · · eiN in Hn.

By the Tits Lemma, the map Sn → Hn in the Theorem statement is well defined. Denote
this map by φ.

Let us prove surjectivity of the map φ:

Lemma. For any word ei1ei2 . . . eiN in H(0)
n , there exists ej1ej2 . . . ejM with the same product

but reduced corresponding word sj1sj2 . . . sjM in Sn.

Proof. Induction on N . Base case N = 0 is clear.
Take our word ei1ei2 . . . eiN . By induction we can assume that si1si2 . . . siN−1

is reduced.
Let w = si1si2 . . . siN−1

and i := iN .
We have two possible cases:

• w · si is reduced, then we are done.
• w ·si is not reduced. In this case, `(w ·si) = `(w)−1, or, equivalently, w(i) > w(i+1).

By one of the HW problems, w has a reduced word sj1sj2 . . . sjN−1
with jn−1 = i.

Therefore

ei1ei2 . . . eiN = ei1ei2 . . . eiN−2
eiei = ei1ei2 . . . eiN−2

ei.

This word is a shorter word, to which we can apply the induction process. �

Let us construct the inverse map for φ. For this, we introduce the action of Hn on Sn by

ei ◦ w =

{
siw `(siw) > `(w)

w `(siw) < `(w).

To prove that this gives an actual action, we need only check the correctness of the relations
between the generators.

Lemma. The map ψ : Hn → Sn which is given by ψ(x) := x ◦ id is inverse for φ.

The Theorem follows from two previous lemmata.



12

0-Hecke Monoid and Totally Non-Negative Matrices. The original motivation to
consider the 0-Hecke monoid is that for every element ei1 . . . eiN we get a subset of totally non-
negative matrices, as the image of the xi1(R>0) . . . xiN (R>0), and this subset in independent
of the choice of word.

Each such subset we can identify by the value of the rank matrix (rij)16i,j6n+1. We recall
(see Problem 4 of HW1) that for every upper-right matrix we can consider a matrix with
the (i, n + 1− j)-entry equal to rank of the submatrix formed out of first i rows and last j
columns.

Entries of rank matrices satisfy some natural inequalities. Let us pronounce the most
sophisticated one: the rank matrix cannot have a submatrix fo the form(

r + 1 r
r + 1 r + 1

)
for some r ∈ Z.

The following sets of matrices are equal:

• those which occur as ranks of upper-right submatrices;
• those matrices obeying the listed inequalities between ranks;
• the matrices that occur as ranks of submatrices of permutation matrices.

Our next goal is to prove the following proposition.

Proposition. The totally non-negative unipotent matrices whose rank matrices match w
are parametrized bijectively using a reduced word for w.

Context from Algebraic Groups. Bruhat decomposition in the theory of algebraic groups
is analogous to the previous proposition. Recall that if B+ is a Borel subgroup of GLn (e.g.,
the group of upper-right matrices), and B− is an opposite Borel subgroup (lower-left matrices
respectively). Then we have the decomposition

GLn =
⊔
w∈Sn

B−wB−.

September 29 : The product has the correct ranks

The result we’re aiming for over the next few classes is the following.

Theorem. Given w ∈ Sn, the set of n × n totally nonnegative unipotent upper triangular
matrices, the ranks of whose upper-right submatrices match those of w, is homeomorphic to

R`(w)
>0 . A parameterization is given by

(t1, . . . , tN) 7→ xi1(t1) · · ·xiN (tN),

where si1 · · · siN is a reduced word for w.

We’ve already done some work toward this result: we showed that these Sn rank conditions
stratify the matrices we’re interested in, and we’ve also shown that the map in the theorem
is well-defined, i.e., that xi1(t1) · · ·xiN (tN) doesn’t depend on the reduced word for w.

For the next few classes, we have three main goals toward this result.
Goal 1. Check that the matrix xi1(t1) · · · xiN (tN) has the right ranks corresponding to w.
Once we learn about Bruhat decompositions, this will be the check that the image of the
map in the theorem lies in N+ ∩B−wB−.
Goal 2. Build the inverse to the map in the theorem. We will learn about flag manifolds,
Grassmannians, etc. on our way to doing this.
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Goal 3. Check that N+ ∩B−wB− is a manifold of dimension `(w).
Today, we started on Goal 1. As a warm-up, we considered the following situation. Let

M be a k×n matrix of rank k. Denote the jth column of M by Mj. Let 1 ≤ q1 < q2 < · · · <
qk ≤ n be the unique indices such that Mqj is not in the span of Mqj+1

, . . . ,Mqk . (These are
the “right-hand pivot columns” of reduced row echelon form.)

We will abbreviate ∆
[k]
J (M) by ∆J(M).

Problem 1. Show that ∆q1···qk(M) 6= 0. Show that if 1 ≤ r1 < r2 < · · · < rk ≤ n are such
that ∆r1···rk(M) 6= 0, then rj ≤ qj for each j.

Solution. The dimension of the span 〈Mq1 , . . . ,Mqk〉 is k by definition of the qj. Thus these
columns are linearly independent, and so ∆q1···qk(M) 6= 0. In general, the columns Ma for
a > qj are in the span of Mqj+1

, . . . ,Mqk . Therefore, if j is maximal such that rj > qj,
the column Mrj is in the span of the columns Mrj+1

= Mqj+1
, . . . ,Mrk = Mqk , and thus

∆r1···rk(M) = 0.

Problem 2. Show that rank(Ma(a+1)...n) = #({a, a+1, . . . , n}∩Q), where Q = {q1, . . . , qk}.
Solution. Again, this follows from the statement that the columns Ma for a > qj are in the
span of Mqj+1

, . . . ,Mqk , since these columns are independent.

Next we move to a situation closer to the one we’re ultimately interested in.

Problem 3. Let M be a totally nonnegative k × n matrix of rank k with right-hand pivot
set Q. Let t > 0. Show that the right-hand pivot set of M · xi(t) is{

(Q ∪ {i+ 1}) \ {i} if i ∈ Q, i+ 1 /∈ Q
Q otherwise

.

Solution. Let M ′ = M · xi(t), and let M ′
j denote the jth column of M ′. Right multiplication

by xi(t) is a column operation; specifically, M ′
j = Mj for j 6= i+ 1, and M ′

i+1 = Mi+1 + tMi.
It’s relatively easy to verify the formula in all cases but one, namely when i /∈ Q and
i+ 1 ∈ Q. In this case, the only potential issue is that M ′

i+1 is no longer independent of M ′
qj

for qj > i+ 1. However, we have that

∆Q(M ′) = ∆Q(M) + t∆(Q\{i+1})∪{i}(M)

by multilinearity of the determinant. The term ∆Q(M) is positive, since the columns of M in
Q are independent, and M is totally nonnegative. Similarly, the second term is nonnegative,
by positivity of t and nonnegativity of M . Therefore, we see that the columns of M ′ in Q
are indeed independent.

Now let i1 · · · iN be a word from the alphabet {1, 2, . . . , n− 1}, and let t1, . . . , tN > 0.

Problem 4. Let M be the top k rows of xi1(t1) · · ·xiN (tN). Show that the right-hand pivot
set of M is [k] · ei1 · · · eiN , where · denotes the action of the 0-Hecke monoid on subsets of
[n] of size k.

Solution. Let I be the k × n matrix whose leftmost k × k submatrix is the identity matrix
and all of whose other entries are 0. Clearly we have that the right-hand pivot set of I is
[k]. Therefore, by induction, it suffices to show: for any k × n totally nonnegative matrix A
of rank k with right-hand pivot set Q, the right-hand pivot set of A · xi(ti) is Q · ei. This is
exactly the content of Problem 3.
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This gives us enough information to compute the rank matrix of the product xi1(t1) · · ·xiN (tN).
It remains to see that the result of this computation matches the permutation w. We’ll finish
this next time.

October 1 : Bruhat decomposition

We start by finishing off our first goal from the previous class, which is to prove:

Proposition. Let ei1 · · · eiN be an element of the 0-Hecke monoid, corresponding to the
permutation w ∈ Sn. Then the ranks of the upper right submatrices of xi1(t1) · · ·xiN (tN),
for t1, . . . , tN ⊂ R>0, are the same as those of the permutation matrix of w.

In order to find the upper right ranks of our matrix, it is equivalent to find the right-hand
pivot set of its first k rows for each k. We concluded the last class by showing that that
pivot set is [k] · ei1 · · · eiN , using the action of the 0-Hecke monoid on subsets of [n]. It thus
remains to show:

Proposition. The top k rows of the permutation matrix w have pivot set [k] · ei1 · · · eiN .

Proof. By induction on N . The base case N = 0 just reduces to looking at the identity
matrix. Now suppose the proposition is true for w′ corresponding to ei1 · · · eiN−1

. We then
want to show that when we act on w′ on the right by the generator ei := eiN of the Hecke
monoid, giving w, the effect on the pivot set of the first k rows is likewise given by the action
of ei. Importantly, since we’re working with submatrices of a permutation matrix, the pivot
set will just be the set of columns which contain 1.

This breaks into 6 cases, based on whether w′(i) < w′(i+ 1) (case 1) or w′(i+ 1) > w′(i)
(case 2), as well as whether row k lies above (case a), between (case b), or below (case c)
rows w′(i) and w′(i+ 1). Fortunately, most of them are easy:

(1a), (2a) If rows w′(i) and w′(i + 1) both lie below row k, then neither i nor i + 1 is in the
pivot set, and this remains true after we apply ei. This is consistent with the fact
that the action of ei does not affect a set containing neither i nor i+ 1.

(1c), (2c) If rows w′(i) and w′(i+ 1) both lie at or above row k, then both i and i+ 1 are in the
pivot set, and this remains true after we apply ei. This is consistent with the fact
that the action of ei does not affect a set containing both i and i+ 1.

(1b) If w′(i) ≤ k < w′(i + 1), then i is in the pivot set and i + 1 is not. Applying ei
exchanges columns i and i+ 1, which removes i from the pivot set and puts i+ 1 in.
This is consistent with the action of ei on the set.

(2b) If w′(i + 1) ≤ k < w′(i), then i + 1 is in the pivot set and i is not. Because
w′(i + 1) < w′(i), applying ei does not affect w′, which is consistent with the action
of ei on the set.

This finishes the induction step of our proof. �

Now that we’ve finished our first goal, we introduce the Bruhat decomposition. We let
B+ ⊂ GLn be the subgroup of upper triangular matrices, and B− the subgroup of lower
triangular matrices. We let N+ ⊂ B+ and N− ⊂ B− be the subgroups of such matrices with
1’s on the diagonal.

Theorem (Bruhat decomposition).

GLn =
⊔
w∈Sn

B−wB+
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Additionally, given a matrix M ∈ GLn, it belongs in the subset given by the w with the
same upper left ranks.

The formula is still true if we replace the B− on the left by B+ and/or the B+ on the
right by B−. The former swap replaces “upper” by “lower” in the second statement of the
theorem, and the latter replaces “left” by “right”.

It will be easier for us to do this by induction by also considering partial permutation
matrices, which need not be square. These are matrices which have at most one 1 in each
row and column, with all other entries 0. We write PPmn to denote the set of m× n partial
permutation matrices. With this in place, we can actually prove a more general version of
the decomposition:

Matm×n =
⊔

π∈PPmn

B−(m)πB+(n)

where B−(m) and B+(n) are the subgroups of m×m and n× n matrices respectively.
To prove the decomposition, we first justify the second part of the theorem statement

by showing that multiplication on the left by an element of B− does not change the ranks
of upper left submatrices., and neither does multiplication on the right by an element of
B+. Specifically, multiplying on the left by an element of B− adds multiples of higher rows
to lower ones, which does not change the space spanned by any set of consecutive rows
starting from the top. Likewise, multiplying on the right by an element of B+ adds multiples
of columns to further right ones, which does not change the space spanned by any set of
consecutive columns starting from the left.

Next, we show that we can write any m× n matrix X as b−πb+ for b− ∈ B−, π ∈ PPmn,
and b+ ∈ B+, and that this π is unique. We proceed by induction on m. The base case of a
0× n matrix is trivial, since there is only one 0× n matrix.

Now consider X. By the inductive hypothesis, we can multiply on the right by an element
of B− and on the left by an element of B+ and produce a partial permutation matrix with
an extra row added at the bottom, such as the example shown here:

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
∗ ∗ ∗ ∗ ∗


For each column of the partial permutation matrix which contains 1, we can add a multiple
of the row containing that 1 to the bottom row and cancel out its entry in that column:

0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 ∗ 0 ∗


Importantly, all of these operations correspond to multiplying on the left by elements of B−.

Then, we can add a multiple of the first column which contains a nonzero entry in the
bottom row to each other column which contains a nonzero entry in the bottom row and
zero those entries out. These operations correspond to multiplying on the right by elements
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of B+. Then, after a final scaling, we obtain a partial permutation matrix:
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0


Now, since we know that multiplication by B− on the left and B+ on the right preserves
upper left ranks, this partial permutation matrix will have the same such ranks. This also
shows us that the partial permutation matrix we obtain in this way is unique.

With this, we have proven the Bruhat decomposition.

Remark. As far as David Speyer knows, the original source for the rank matrix approach
to Bruhat decomposition is surprisingly late: “Flags, Schubert polynomials, degeneracy loci,
and determinantal formulas”, William Fulton, 1992. Another good source is Chapters 14
and 15 of Cominatorial Commutative Algebra, by Ezra Miller and Bernd Sturmfels.

Remark. We can think of B+(m) as the subgroup of matrices which preserve the flag

F1 :=


∗
0
...
0
0

 ⊂ F2 :=


∗
∗
...
0
0

 ⊂ · · · ⊂ Fm−1 :=


∗
∗
...
∗
0

 ⊂ Fm :=


∗
∗
...
∗
∗


and likewise as B−(n) as the subgroup of matrices which preserve the flag

G1 :=


0
0
...
0
∗

 ⊂ G2 :=


0
0
...
∗
∗

 ⊂ · · · ⊂ Gn−1 :=


0
∗
...
∗
∗

 ⊂ Gn :=


∗
∗
...
∗
∗


If we view a matrix M as an element of Hom(Cn,Cm), then the upper left submatrix cor-
responds to the induced map Gj → Cm/Fm−i. This more coordinate-agnostic interpretation
is useful in the more general context of vector bundles, which is the main topic of Fulton’s
“Flags, Schubert polynomials, degeneracy loci, and determinantal formulas”, cited above.

Looking forward, we note that, while the permutation w or partial permutation π in the
Bruhat decomposition is unique, the full decomposition b−wb+ is not. For example, we can
actually always obtain a decomposition of the form N−WB+, by factoring out the diagonal
entries of the B− matrix as a diagonal matrix and commuting it through W to the other
side. In fact, we’ll be able to fix this next time with the following:

Theorem. Each matrix in B−wB+ has a unique factorization of each of the following forms:

B−w(w−1N+w ∩N+)

(N− ∩ wN−w−1)(B−w ∩ wB+)(w−1N+w ∩N+)

(N− ∩ wN−w−1)wB+

We finish by looking at the extreme cases of this. When w = id, the top and bottom lines
give unique factorizations of form B−N+ and N−B+—this is precisely LU decomposition.
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The middle line gives a unique factorization of the form N−TN+, where T consists of the
diagonal matrices, the intersection B− ∩B+—this is the LDU decomposition.

On the other hand, if w = w0 is the longest word, which corresponds to the matrix
0 · · · 0 1
0 · · · 1 0
...

. . .
...

...
1 · · · 0 0


then we have w0N−w

−1
0 = N+, which makes the first factor in the second expression N− ∩

N+ = {id}. The last factor likewise only includes the identity. Then B−w0 and w0B+ both
give the set of matrices of the form 

0 · · · 0 ∗
0 · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗


This is consistent with the fact that B−w0B+ consists of the matrices with the same upper
left ranks as w0.

October 6 : A unique Bruhat decomposition

As we stated at the end of last time, while the permutation or partial permutation in the
Bruhat decomposition is unique, the full decomposition X = b−wb+ is generally not. We
now discuss getting a unique representation. For simplicity, we switch back to the case of
permutation matrices.

Here is where we are going:
Theorem. Each matrix in B−wB+ has a unique representation in the forms

B−w(w−1N+w∩N+) = (N−∩wN−w−1)(B−w∩wB+)(w−1N+w∩N+) = (N−∩wN−w−1)wB+.

Let Φ+ = {(i, j) : 1 ≤ i < j ≤ n}. For any X ⊆ Φ+, let N+(X) = {g ∈ N+ : gij =
0 for (i, j) /∈ X}.
Problem 1. Show that N+ ∩ wN+w

−1 is N+(X) for a certain set X, and describe X
explicitly. Show that #X =

(
n
2

)
− `(w).

Solution. The nonzero entries of elements of N+ are those indexed by Φ+. For any matrix
M , it is easy to see that (wMw−1)ij = Mw−1(i)w−1(j), so that the nonzero entries of elements
of wN+w

−1 are those indexed by wΦ+ = {(w(i), w(j)) : 1 ≤ i < j ≤ n}. Thus we see that
N+ ∩ wN+w

−1 is N+(X) for X = Φ+ ∩ wΦ+ = {(i, j) : 1 ≤ i < j ≤ n, 1 ≤ w−1(i) <
w−1(j) ≤ n}, which is complement of the set of inversions of w−1 in Φ+, and so we also have
#X =

(
n
2

)
− `(w−1) =

(
n
2

)
− `(w).

Problem 2. For any subset X of Φ+, show that every element of N+ has a unique factor-
ization of the form N+(X)N+(Φ+ \X).
Solution. As an example, consider the n = 4 case with X = {(1, 2), (1, 4), (2, 3)}. We have

1 a 0 b
1 c 0

1 0
1




1 0 x 0
1 0 y

1 z
1

 =


1 a x ay + b

1 c y + cz
1 z

1

 ,
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and it is easy to see the statement is true in this case. Moreover, one can see how this might
generalize: the (i, i+ 1) entry of the product is simply the (i, i+ 1) entry of whichever factor
is nonzero in that spot. Then, the (i, i + 2) entry is, up to addition of a polynomial in the
entries already considered, the (i, i+ 2) entry of whichever factor is nonzero in that spot. It
is not hard to see that this pattern continues, and the pattern makes the result clear.
Problem 3. Show that every element of N+ has a unique factorization in the form

(N+ ∩ w−1N−w)(N+ ∩ w−1N+w).

Solution. By the same reasoning as in Problem 1, the left-hand term is N+(X), where X is
the set of inversions of w−1, and the right-hand term is N+(Φ+ \X). Thus this follows from
Problem 2.
Problem 4. Show that every element of B+ has a unique factorization in the form

(B+ ∩ w−1B−w)(N+ ∩ w−1N+w).

Solution. We have that B+∩w−1B−w = D(N+∩w−1N−w), where D ⊂ GLn is the subgroup
of diagonal matrices, and similarly, B+ = DN+. The factorization of B+ in the form DN+

is clearly unique, and thus so is the factorization in question.
Problem 5. Show that, if any of the unique factorization claims in the theorem is true,
then they all are true.
Solution. We have unique factorization of the form B+ = (B+ ∩ w−1B−w)(N+ ∩ w−1N+w),
and by transposing, we get unique factorization of the form B− = (N− ∩ wN−w−1)(B− ∩
wB+w

−1). Now the equivalence of the unique factorization claims is a matter of moving the
w around and using these two unique factorizations above.
Problem 6. Show that every matrix in B−wB+ has at least one factorization as in the
theorem.
Solution. We have factorizations of the form B+ = (B+∩w−1B−w)(N+∩w−1N+w) and B− =
(N−∩wN−w−1)(B−∩wB+w

−1). We also have that (B−w∩wB+) ⊆ (B−∩wB+w
−1)w(B+∩

w−1B−w) = (B−w ∩ wB+)(B+ ∩ w−1B−w), since (B+ ∩ w−1B−w) contains the identity
matrix. Therefore, by factoring B− and B+ in B−wB+ as above, we have factorizations of
the form (N− ∩ wN−w−1)(B−w ∩ wB+)(w−1N+w ∩N+) as in the theorem.

October 8: B−wB− ∩N −+ as a manifold

Proposition (Exercise 7.6). Every matrix in B−wB+ has at least one factorization in each
of the forms:

B−w(w−1N+w∩N+) = (N−∩wN−w−1)(B−w∩wB+)(w−1N+w∩N+) = (N−∩wN−w−1)wB+

Proof. By exercise 7.5, it suffices to show that every matrix in B−wB+ can be factored into
the middle form (N− ∩wN−w−1)(B−w ∩wB+)(w−1N+w ∩N+). From exercise 7.4 we know
there are factorizations:

B− = (N− ∩ wN−w−1)(B− ∩ wB+w
−1)

B+ = (B+ ∩ w−1B−w)(N+ ∩ w−1N+w)
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Therefore,

1︷︸︸︷
B− w

2︷︸︸︷
B+ =

1︷ ︸︸ ︷
(N− ∩ wN−w−1)(B− ∩ wB+w

−1)w

2︷ ︸︸ ︷
(B+ ∩ w−1B−w)(N+ ∩ w−1N+w)︸ ︷︷ ︸

3︷ ︸︸ ︷
w(w−1B−w ∩B+)(B+ ∩ w−1B−w)

Now the middle part picked out by 3 is the product of the subgroup (the intersection
of two subgroups is a subgroup) B+ ∩ w−1B−w with itself, which gives us back the whole
subgroup B+ ∩w−1B−w, Passing in the multiplication by w, the middle term picked out by
3 becomes B−w ∩ wB+. Thus,

B−wB+ = (N− ∩ wN−w−1)

3︷ ︸︸ ︷
(B−w ∩ wB+)(w−1N+w ∩N+)

as desired. �

Proposition (Exercise 7.7). Every matrix in B−wB+ has at most one factorization in the
form:

B−w(w−1N+w∩N+) = (N−∩wN−w−1)(B−w∩wB+)(w−1N+w∩N+) = (N−∩wN−w−1)wB+

Proof. We will use the factorization on the left hand side. First note that we already know
that the permutation w is determined by the rank function of the matrix. So if given two
factorizations of the same matrix in this form, we must have:

g1wh1 = g2wh2

for some g1, g2 ∈ B−, h1, h2 ∈ (w−1N+w ∩ N+) and some permutation matrix w. B− and
N+ are subgroups of the group of all matrices, so g−1

i ∈ B− and h−1
i ∈ N+. Thus,

g−1
2 g1 = wh2h

−1
1 w−1

The left side of the equation lies in the subgroup B−. On the right side, h2h
−1
1 lies in N+ ∩

w−1N+w. It follows that wh2h
−1
1 w−1 ∈ wN+w

−1∩N+ ⊆ N+. Therefore, g−1
2 g1, wh2h

−1
1 w−1 ∈

N+ ∩B− = {e}, so g−1
2 g1 = wh2h

−1
1 w−1 = e which implies g1 = g2 and h1 = h2.

By exercise 7.5, this proves uniqueness for all the factorizations listed in the equality. �

We now move on to proving that N+ ∩B−wB− is a manifold.

Problem. Let w be the permutation matrix 51423, i.e. the matrix
[
e5 e1 e4 e2 e3

]
.

What is N−w ∩ wN+? What open subset of it is N+B− ∩N−w ∩ wN+?

Proof. We will compute N−w ∩ wN+ in two different ways. For the first method, we will
just compute it directly:

N−w =


1 0 0 0 0
∗ 1 0 0 0
∗ ∗ 1 0 0
∗ ∗ ∗ 1 0
∗ ∗ ∗ ∗ 1




1
1

1
1

1

 =


0 1 0 0 0
0 ∗ 0 1 0
0 ∗ 0 ∗ 1
0 ∗ 1 ∗ ∗
1 ∗ ∗ ∗ ∗


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wN+ =


1

1
1

1
1




1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗
0 0 0 0 1

 =


0 1 ∗ ∗ ∗
0 0 0 1 ∗
0 0 0 0 1
0 0 1 ∗ ∗
1 ∗ ∗ ∗ ∗


and taking the intersection, we get

N−w ∩ wN+ =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 ∗ ∗
1 ∗ ∗ ∗ ∗


For the second method, we rewrite our desired intersection as w(w−1N−w ∩N+).

Now we recall that previously, we had shown that the very similar looking set wN+w
−1∩N+

could be written as N+(X), where X was the complement of the inversion set of w−1. We
will apply a very similar argument to our intersection, to get a very similar result. Since
(w−1Mw)ij = Mw(i),w(j), the “free” non-zero entries of elements of w−1N−w are those indexed
by {(w−1(i), w−1(j)) | 1 ≤ j < i ≤ n}, i.e. the set {(i, j) 1 ≤ w(j) < w(i) ≤ n}. Upon
intersection with N+, our “free” non-zero entries of w−1N−w ∩N+ are

X = {(i, j) | 1 ≤ w(j) < w(i) ≤ n, 1 ≤ i < j ≤ n},
i.e. exactly the inversion set of w. In our case, this is X = {12, 13, 14, 15, 34, 35}. Then we
have that

N−w ∩ wN+ = wN+(X) =


1

1
1

1
1




1 ∗ ∗ ∗ ∗
0 1 0 0 0
0 0 1 ∗ ∗
0 0 0 1 0
0 0 0 0 1

 =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 ∗ ∗
1 ∗ ∗ ∗ ∗


So either way we get the same answer. Now, we should compute the open subset N+B− ∩
N−w ∩wN+. Thinking of N+B− as N+πB− where π is the identity permuation, since N+ is
acting on the right it does upwards row operations, and B− acting on the left does leftward
column operations. So N+B− is those matrices whose lower right ranks agree with the
identity, i.e. the lower right submatrices are all full rank. Since it suffices to consider the
square matrices, this means we are looking at the setM =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 a b
1 c d e f


∣∣∣∣ ∆5

5(M)6=0, ∆45
45(M)6=0, ∆345

345(M)6=0,

∆2345
2345(M) 6=0, ∆12345

12345(M)6=0

 .

Simplifying these determinants, we getM =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 a b
1 c d e f


∣∣∣∣ d 6= 0, af 6= be, e 6= ad, c 6= 0


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as our open subset. �

Now that we have finished the warmup problem, we will head towards showing that N+ ∩
B−wB− is a manifold of dimension `(w). To do this, we will progressively rewrite N+ ∩
B−wB−, and our end goal is something which is more obviously an open subset of the
correct dimensional space. To that end, here is our first rewriting:

Problem. Show that N+ ∩B−wB− ∼= (N+B− ∩B−wB−)/B−.

Given a coset mB−, where m ∈ N+B−∩B−wB−, we want to show that this coset contains
exactly one element of N+ ∩ B−wB−. Existence is easy: since m ∈ N+B−, we can write
m = nb for n ∈ N+ and b ∈ B−. Then mb−1 = n ∈ N+, and is still in B−wB−. For
uniqueness, suppose that there are b1, b2 ∈ B− such that mb1,mb2 ∈ N+. Then we can
write mb1 = n1 and mb2 = n2 for n1, n2 ∈ N+, so that n2b

−1
2 = m = n1b

−1
1 . Now we

rearrange so that n−1
1 n2 = b−1

1 b2, and since N+ and B− are subgroups, this product must be
in N+ ∩B− = {I}.

We now have a bijection between these sets, which in fact comes from the natural smooth

map N+ ∩B−wB− N+B− ∩B−wB− (N+B− ∩B−wB−)/B−. Some methods

were proposed for showing that this map is a homeomorphism. One option would be to show
that this is an open map, since any open continuous bijection is a homeomorphism. Since
this is a smooth map, another option is to explicitly write it out with coordinates in charts,
and take derivatives.

October 13: Grassmannians

Finishing up the previous class. Recall that we constructed a bijection from N+ ∩
B−wB− to (N+B− ∩B−wB−) /B−. Furthermore, the fact that this map is smooth/algebraic
follows from the fact that multiplication of matrices is smooth/algebraic, and these properties
continue to hold under functorial constructions like products and quotients. To show that
the map is an isomorphism in the smooth/algebraic category, the only thing left to show is
that the inverse is smooth. There are two ways to do this.

• The inverse map is obtained from the LU factorization of a matrix. One can check
by hand that this is a smooth/algebraic map.
• One can also compute the derivative of the multiplication map, which is the inverse

of the factorization map. If the derivative is invertible, the inverse function theorem
provides a local smooth inverse, which must be the global inverse as well.

Problem (Problem 8.2 from the worksheet). Show that

(N+B− ∩B−wB−) /B− ∼= N+B− ∩ (N−w ∩ wN+)

The uniqueness statement of Bruhat decomposition let us factorize any element b−wb
′
− in

the following two ways.

b−wb
′
− = n−wb−

= wn+b−

This means any element of (B−wB−) /B− can be uniquely written as n−w and wn+, i.e.
as an element of N−w ∩ wN+. Taking intersection with N+B− on both sides, we get the
isomorphism claimed in the problem.
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Problem (Problem 8.3 from the worksheet). Show that N+B− ∩ (N−w ∩ wN+) is an open
subset of N−w ∩ wN+, and N−w ∩ wN+

∼= R`(w).

Recall that N+B− is an open subset of maximal dimension, which means its intersection
with Nw∩wN+ will be an open subset of the latter subspace. The dimension of N−w∩wN+

is equal to R`(w) following the discussion in a prior class.
We now switch to discussing Grassmannians:

Definition. The Grassmanian G(k, n) is the set of k-dimensional subspaces of Fn (where F
is a field2). Alternatively, it’s the set of orbits of maximal rank k × n matrices under left
multiplication by elements of GL(k).

Topologizing G(k, n). Observe that the second definition tells us any k × n matrix where
some k×k minor is non-zero corresponds to an element of G(k, n). By multiplying on the left
by an appropriate element of GL(k), we can ensure that the non-vanishing minor is actually
the identity matrix. This lets us freely vary the other entries of the matrix, giving a locally
bijective map from G(k, n) to Rk(n−k). We can do this for all

(
n
k

)
minors, and as a result,

cover G(k, n) with these coordinate patches. This turns G(k, n) into an k(n−k)-dimensional
manifold/scheme (as long as we verify that the transition maps are smooth/algebraic).

Another way to put additional geometric structure on G(k, n) is to map it injectively into

a closed subspace of RP(nk)−1. Given a matrix representative of an element in G(k, n), we
map it to the vector of its k× k minors. The induced left action of g ∈ GL(k) on this space
is multiplication by det(g). Also, the image misses 0, which means we get a well defined

map, which we’ll call P , from G(n, k) to RP(nk)−1. We need to verify the following two facts.

• P is injective.
• The image of P is closed.

Note that to verify that the map is injective, it will suffice to show that it’s injective when
restricted to each coordinate chart corresponding to non-vanishing of some k× k minor. For
if it were the case that P (x) = P (y) for some x and y not in the same coordinate chart, that
would mean some k× k minor vanished for x but not y, or vice versa. But that would mean
that their images under P were not equal. Without loss of generality, we can assume we’re
in the coordinate chart corresponding to the non-vanishing of the left-most k × k minor.

Let [v] ∈ RP(nk)−1 be the image of a point in the coordinate chart. We know that the first
k×k block is the identity; to determine the value of the ijth entry aij, compute the minor of
the first k columns and the jth column, except the ith column. This minor will be (−1)iaij,
since all but one of the columns have ones on the diagonals. Reading off the corresponding
coordinate of v tells us the value of aij, showing that this map is invertible, and thus injective.

To show that the image of P is closed, observe that the image can locally be described as
the graph of a continuous function: the input being the coordinates which directly give you
the values of aij, the output being all the other coordinates, and the continuous function
being the one that maps a matrix to all of its minors.

This shows that the map P is injective, and its image is closed. This embedding is
known as the Plücker embedding, and the corresponding coordinates are known as Plücker
coordinates.

2For this course, we’ll work with F = R.
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Stratifying G(k, n). For every rank k k × n matrix M , there exists a unique size k subset
IM of [n], called the pivot set, such that M can be put into reduced row-echelon form where
only the columns from IM have ones on the diagonal, and zeroes elsewhere. Observe that
in the reduced row echelon form, the only non-zero entries other than the pivot columns
are allowed to the right of the ones in their rows. What this means is that if IM is not
{1, 2, . . . , k}, the number of non-zero entries will be less than k(n− k). This process breaks
up G(k, n) into a disjoint union of strata.

G(k, n) =
⊔
I⊂[n]

#(I)=k

R#{(i,j)|i<j, i∈I, j∈[n]\I}

October 15: The flag manifold, and starting to invert the unipotent
product

Today we defined the Flag manifold abstractly as

F`n = {chains F1 ⊆ F2 ⊆ · · · ⊆ Fn−1 ⊆ Rn | Fi is an i-dimensional subspace} ⊆
n−1∏
k=1

G(k, n)

which is a closed submanifold/subvariety of the product of Grassmannians written above.
One way to describe the flag variety is by iteratively picking a basis for Rn, where the first

basis vector is a basis for F1, and then the next comes from extending the basis to F2, and
so on. However, this is not a unique representation—we could rescale the first vector, and
more generally we could replace the kth vector by any linear combination of the first k. If
we put the vectors together into the columns of a n×n matrix, then our possibilities for the
same flag are exactly described by acting on the right by B+.

More precisely, g ∈ GLn /B+ (resp. B−) corresponds to the Flag variety obtained by
taking Fk to be the span of the leftmost k columns of g (resp. rightmost k columns). If we
quotient on the left side instead, using g ∈ B+\GLn (resp. B−), then Fk is the span of the
topmost k rows of g (resp. bottom k rows).

We can cover GLn /B− with n! charts, each isomorphic to R(n2) as follows. Starting with
g ∈ GLn, we will use leftward column operations to reduce g to a unique representative with
1’s in the position of a permutation matrix w and 0’s to the left of the prescribed 1’s.

Explicitly, g ∈ GLn is invertible, so its rightmost column in non-zero, so its rightmost
column has at least one non-zero entry. Pick a non-zero entry and rescale it to 1; then
use leftward column operations to reduce the other entries of g in that row to 0. Column
operations do not change the rank of a matrix, so we may repeat the process with the second
from rightmost column, and so on until g is in the desired form. Note that leftward column
operations are given by right multiplication by an element of B−, so we are reducing g to
another representative of the same coset in GLn /B−.

Example (Caution). In class we discussed possibly choosing w before reducing g, by taking
the 1’s to be in positions where g is non-zero. This is not always possible. Take

w =

 1
1

1

 and g =

0 1 1
1 1 1
1 0 1

→
0 0 1

1 0 1
1 −1 1


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In the first step, our leftward row operations eliminate the 1 in position (2, 2), forcing us to
take (3, 2) as the position with a 1 in the second column, instead of (2, 2) as prescribed by
w. Therefore, we must instead produce w as a result of the operations on g.

Thus, we may choose a unique representative g ∈ GLn/B− up to choice of w. For a fixed
w, these representatives correspond to matrices with

(
n
2

)
undetermined entries (those to the

right of the prescribed 1’s). To map this into Rk(n−k), take the rightmost column for k = 1.
After that, use a leftward row operation to reduce the rightmost column, and then send
the remaining non-zero entries of the rightmost two columns R2(n−2), and continue in this

manner to obtain the map R(n2) ↪→
∏n−1

k=1 Rk(n−k). This gives a closed embedding of F`n into∏n−1
k=1 Rk(n−k) ⊂

∏n−1
k=1 G(k, n) indexed by σ([n− k+ 1, n− k+ 2, . . . , n]) in position k (recall

that the Plücker coordinates for G(k, n) are indexed by subsets of [n] of size k).

Example. Consider the chart in GL4 /B− consisting of matrices of the form
1 u v w
0 1 x y
0 0 1 z
0 0 0 1

 .
The first component, F1, of the flag is spanned by

[ w
y
z
1

]
, so it gives the point (w, y, z) in

the chart of G(1, 4) corresponding to lines of the form
[ ∗
∗
∗
1

]
. The second component, F2,

of the flag is the image of

[
v w
x y
1 z
0 1

]
, so the minor of the last two rows is nonzero. So it

is in the chart of G(2, 4) corresponding to planes of the form

[
∗ ∗
∗ ∗
1 0
0 1

]
. Explicitly, we can

rewrite this plane as

[
v w−vz
x y−xz
1 0
0 1

]
. Similarly, the image of

[
u v w
1 x y
0 1 z
0 0 1

]
is the same as that of[

u v−ux w−uy−vz+uxz
1 0 0
0 1 0
0 0 1

]
. In short, we have computed that the point (u, v, w, x, y, z) in this chart

R(4
2) ⊂ F`4 maps to the point (w, y, z)× (v, w−vz, x, y−xz)× (u, v−ux,w−uy−vz+uxz)

in R1(4−1) × R2(4−2) × R(3(4−3) ⊂ G(1, 4)×G(2, 4)×G(3, 4).

In addition to covering F`n with n! open charts, we can also stratify F`n into n! affine
spaces, using our Bruhat decompositions. We have

GLn =
⊔
w∈Sn

B−wB− =
⊔
w∈Sn

(wN+ ∩N−w)B−

and, therefore,

F`n =
⊔
w∈Sn

B−wB−/B− ∼=
⊔
w∈Sn

(wN+ ∩N−w).

The affine sets here are called Schubert cells.
As a side note, let’s count the number of points in F`n(Fq). Using the quotient description,

we have

#F`n(Fq) =
#GLn(Fq)
#B−(Fq)

=

∏n−1
k=1(qn − qk)

(q − 1)nq(
n
2)

=
n−1∏
k=0

(1 + q + · · ·+ qj).
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Summing up over Schubert cells, we have

#F`n(Fq) =
∑
w∈Sn

#(wN+ ∩N−w)(Fq) =
∑
w∈Sn

q`(w).

This gives us the fun identity∑
w∈Sn

q`(w) =
n−1∏
k=0

(1 + q + · · ·+ qj).

0.1. Returning to the goal of inverting a unipotent product: Recall that xi(t) cor-
responds to the matrix with 1’s on the diagonal, t in entry (i, i + 1) and 0’s everywhere
else:

xi(t) =



1
. . .

1 t
1

. . .
1


Also recall that if the corresponding word in Sn, si1 · · · siN is reduced, then the product

xi1(t1) · · ·xiN (tN) gives a map between manifolds of the same dimension, RN → B−wB− ∩
N+
∼= N−w ∩ wN+. The isomorphism between B−wB− ∩ N+ and N−w ∩ wN+ consists of

replacing a matrix g by another matrix gb− which represents the same flag. This suggests
we should use concepts based on flags to analyze this product.

Example. Recall our running example: the subproducts of x1(u)x2(v)x1(w) are1
1

1

 ,
1 u

1
1

 ,
1 u uv

1 v
1

 ,
1 u+ w uv

1 v
1

 .
By taking rightmost columns, these correspond to flags

∅ : R

0
0
1

 ⊂ R

0
0
1

+ R

0
1
0


x1(u) : R

0
0
1

 ⊂ R

0
0
1

+ R

u1
0


x1(u)x2(v) : R

uvv
1

 ⊂ R

uvv
1

+ R

u1
0


x1(u)x2(v)x1(w) : R

uvv
1

 ⊂ R

uvv
1

+ R

u+ w
1
0


This example suggests the following proposition.
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Proposition. Let Fj be the Flag constructed from the jth partial product using the right-
most columns. More precisely, let gj = xi1(t1) · · ·xij(tj), and let Fj be the corresponding

flag of right columns. Then F k
j−1 = F k

j for k 6= n− ij.

Proof. Right multiplication by xjj(tj) only affects column ij + 1. So clearly for columns to
the right, the submatrices of the rightmost k columns are the same between gj−1 and gj. So
of course F k

j−1 = F k
j for k > n− ij. The (ij + 1)st column of gj is tj times the ijth column

of gj−1 plug the (ij + 1)st column of gj−1. Thus the ijth and (ij + 1)st columns of gj and

gj−1 have the same span, so F
n−ij−1
j−1 = F

n−ij−1
j−1 . And adding further (leftwards) linearly

independent columns again will preserve equality of the spans of the two matrices, so this
completes the proof. �

We can depict this graphically by labeling each chamber of the wiring diagram with a
subspace, as in Figure 2. If we truncate the wiring diagram after the first j crossings, the
chambers which are open on the right of that truncated diagram are the subspaces in the
flag Fj.

1

2

3

1

2

3[
0
0
1

]
[

0 0
1 0
0 1

] [
u 0
1 0
0 1

]
[
uv
v
1

]
[
u+w uv

1 v
0 1

]

Figure 2. Spaces labelled in the wiring diagram.

The height of a chamber is the number of wires which go underneath it. The labels
come from the wires which pass above the chamber. We will compute a number to put in
each chamber, which only depends on the subspace. Namely, this will be a ratio of Pluc̈ker
coordinates (since we need to be unaffected by scaling).

Proposition. Let V be a label of a chamber at height k. Then ∆(k+1)(k+2)···n(V ) 6= 0.

Proof. V is the span of the last n − k columns of g, and the matrix g is upper triangular,
since it is a partial product of things in N+. Thus the bottom right (n− k)× (n− k) minor
of g is non-zero. �

Label each chamber by the sources of the strands passing above it, as in Figure 3
We claim that these are the topmost nonvanishing minors of the corresponding spaces. In

Figure 4, we show the values of those minors:

1

2

3

1

2

3

3

23 13

1

12

Figure 3. Labeling chambers of the diagram
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1

2

3

1

2

3

1

1 u

uv

vw

Figure 4. Labeling chambers of the diagram with minors

We now set out on the goal of proving that these are, indeed, the topmost nonvanishing
minors. We first see how the chamber labels change. In general, they change by the action
of the symmetric group. Figure 5 shows an example with a non-reduced word. However, as
long as the word si1si2 · · · siN is reduced, the symmetric group action and the 0-Hecke action
coincide.

1

2

1

2

2 1 2

s1 s1

Figure 5. When the word is non-reduced, the xi act like they’re in the sym-
metric group, not the 0-Hecke monoid.

Proposition. Suppose si1 , . . . , siN is a reduced word, V is a subspace in some chamber, and
I is the label of that chamber. Then I is the topwards pivots of V , i.e. ∆I(V ) is the topmost
non-zero minor.

Proof. First, we note that when we right multiply by xij(tj), this acts on the labels of the
chambers via the Hecke action from right to left by swapping strand labels (xij+1

· · ·xN)−1(j)
and (xij+1

· · ·xN)−1(j+1) when (xij+1
· · ·xN)−1(j) is an above strand and (xij+1

· · ·xN)−1(j+
1) is not.

We want to show that ∆([k+1,n]·ei1 ···eij ) is (the topmost) non-zero on the (n−k)-dimensional
subspace of the j-th flag (with basis given by columns of the partial product). Recall the
following facts from a previous worksheet:

• The top right pivot set of M , where M is the top k rows of xi1(t1) · · ·xiN (tN), is
[k] · ei1 · · · eiN ; and
• The upper right submatrices of xi1(t1) · · ·xiN (tN) have the same subranks as those

of M .

We now know the ranks of every upper right submatrix of the product. This is enough to
either get the rightward pivots of the top row, or the top pivots of the right column. �

In Figure 6, we see the crossings labelled by the ratio of surrounding minors. In particular,

the crossing label is (left(right)
(top)(bottom)

. This is how we’ll recover the original partial products just

from the information in the wiring diagram.
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Figure 6. Chambers labelled by minors; crossings labelled by ratio of sur-
rounding minors.

October 20: Continuing to invert the unipotent product

Remarks for the proof. We give several remarks concerning the proof of the final Propo-
sition from the last time.

• Adding the factors xi(t) on the left of the product induces the action on the subspaces
of flags. This action translates to the action of symmetric group Sn on the labels for
chambers. Because our product is in the reduced form (the corresponding Sn-word
is reduced), we can equally think of this action as a 0-Hecke action.
• The latter action of 0-Hecke has the following (different from the previous) form:

ei ◦ S =

{
S\{i+ 1} ∪ {i} if i+ 1 ∈ S and i 6∈ S,
S otherwise .

• In the worksheet 5 the following Lemma was proved.

Lemma. If M is a tnn n× k matrix whose top non-zero minor is in position S, and
t > 0, then xi(t) ·M is tnn and has top nonzero minor in position ei ◦ S.

The use of this fact simplifies the final part of the proof.

Formulas for arguments of elementary matrices via subproducts. We can get back
to the ideas pictorially represented on Figure 6.

Continue to assume that the word si1si2 . . . siN is reduced. Let us focus on a crossing j.

Abbreviate ij to i and tj to t. Let the last n− ij + 1 columns of gj−1 be

 | |~x ~y V
| |

, so the

last n− nj + 1 columns of gj are

 | |
~x (t~x+ ~y) V
| |

. Let a be the source of the strand going

up through the j-th crossing and let b be the source of the strand going down.

Lemma. In previous notation, a < b.

Proof. This follows from the reducedness of the word si1si2 . . . siN . �

Lemma. ∆Ia([y V ]) = 0.

Proof. We know that ∆Ib is the topmost non-zero minor of [y V ]. But the previous lemma
asserts a < b, so the statement follows. �

Lemma. ∆Ia([t~x+ ~y V ]) = t ·∆Ia([~x V ]).
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Proof. Easily follows from linearity of minors and the previous lemma. �

Last step before the main proposition is the following Lemma proved in Homework 3.

Lemma. ∆Iab([~x ~y V ]) ·∆I([V ]) = ∆Ib([~y V ]) ·∆Ia([~x V ])−∆Ia([~y V ]) ·∆Ib([~x V ]).

Finally, putting all previous lemmata together, we have the desired statement:

Proposition. In previous notation, we have the equality:

t =
∆Ib([~y V ]) ·∆Ia([t~x+ ~y V ]

∆Iab([~x ~y V ]) ·∆I([V ])
.

Example. Recall our running example from last time:

x1(u)x2(v)x1(w) =

1 u+ w uv
1 v

1

 ,
and the wiring diagrams with subspace and with topmost non-zero minors3 are

1

2

3

1

2

3[
0
0
1

]
[

0 0
1 0
0 1

] [
u 0
1 0
0 1

]
[
uv
v
1

]
[
u+w uv

1 v
0 1

]
1

2

3

1

2

3

1

1 u

uv

vw

Then if (a, b) = (1, 2), then V =
[

0
0
1

]
(I = {3}), ~y =

[
0
1
0

]
, ~x =

[
1
0
0

]
and t = u. Indeed in

this case, we have the equality

u =
∆Ib([~y V ]) ·∆Ia([t~x+ ~y V ]

∆Iab([~x ~y V ]) ·∆I([V ])
=

∆2,3(
[

0 0
1 0
0 1

]
) ·∆1,3(

[
u 0
1 0
0 1

]
∆1,2,3(

[
1 0 0
0 1 0
0 0 1

]
]) ·∆3(

[
0
0
1

]
)

=
1 · u
1 · 1

.

B+-matrices in (N−w∩wN+)B−-form. It will be useful for further considerations to have
the explicit example of subproducts in the (N−w ∩ wN+)B−-form.

We continue to consider the example of x1(u)x2(v)x1(w). The subproducts are1
1

1

 ,
1 u

1
1

 ,
1 u uv

1 v
1

 ,
1 u+ w uv

1 v
1

 .
The corresponding (N−w ∩ wN+)B−-forms are1

1
1

 ,
 1

1 1
u

1

 ,
 1

1 1
u

1 1
uv

 ,
 1

1 1
u

1 u+w
vw

1
uv

 .
3Remember that in this form bottom-most non-zero minors equal 1; the entries in chambers are actually

quotients of the topmost over bottom-most non-zero minors.
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Note that the ratios of Plücker coordinates are the same for matrices in different forms,
e.g.,

∆13

∆23

1 u
1

1

 = u =
∆13

∆23

 1
1 1

u
1

 ,

∆12

∆13

1 u+ w uv
1 v

1

 = (u+ w)v − uv = vw =
−1

1
uv
− u+w

uvw

=
∆12

∆13

 1
1 1

u
1 u+w

vw
1
uv

 .

October 22 – Continuing to invert the unipotent product

Suppose si1 · · · siN is a reduced word in Sn and t1, . . . , tN ∈ R>0. Let gr be the partial
product

gr = xi1(t1) · · ·xir(tr)
Note that gr ∈ N+ ∩B−wrB+ where wr = si1 · · · sir . We showed on worksheets 7 and 8 that
we can find a unique fr ∈ N−wr ∩ wrN+ with grB− = frB−.

Example. The current running example involves the partial products of x1(t1)x2(t2)x1(t1),
n = 3.

1

2

3

1

2

3

t1

t2

g2 =

1 t1 t1t2
1 t2

1

 , f2 =

 1
1 t−1

1 t−1
1 t−1

2


Figure 7. r = 2

1

2

3

1

2

3

t1

t2

t3

g3 =

1 t1 + t3 t1t2
1 t2

1

 , f3 =

 1
1 t−1

1 t1+t3
t1t2

t−1
1 t−1

2


Figure 8. r = 3

Remark. Since gB− = fB−, g and f give the same flag via the rightmost column con-
struction. This follows from the fact the right actions by B− correspond to leftward row
operations, which do not change the span of the rightmost columns.

Lemma. The k-th column of f is the unique vector in the span of columns k, k + 1, . . . , n
of g which has a 1 in position (w(k), k) and 0’s in positions (w(m),m) for k < m ≤ n.

This Lemma was said a bit sketchily in the class discussion; here is a detailed proof.

Proof. By the description in terms of flags, the span of the rightmost n− k+ 1 columns of f
is the same as that of g. So the k-th column of f is in the span of the required vectors, and
it clearly has 1’s and 0’s in the correct spots. What remains is to show that no other vector
in the span of these columns of f has the same entries in rows {w(k), w(k + 1), . . . , w(n)}.
To show this uniqueness, we need to know that the minor in rows {w(k), w(k+1), . . . , w(n)}
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and columns {k, k + 1, . . . , n} is invertible. If we reorder the rows of this minor by the
permutation w, we get an upper triangular matrix with 1’s on the diagonal. �

Proposition (Exercise 11.1). The (ir + 1)st column of fr−1 is the same as the irth column
of fr. And for k 6= ir, ir + 1, the kth columns of fr−1 and fr are the same.

In the example above, this proposition says that the first column of f3 should be the same
as the second column of f2 (and it is!).

Proof. Note that the right action of xir adds tr times the irth column of the matrix to the
(ir + 1)st column of the matrix: | |

· · · vir vir+1 · · ·
| |

 · xir−−→

 | |
· · · vir trvir + vir+1 · · ·

| |


Thus (as we have mentioned before) the span of the columns {k, k + 1, . . . , n} is only

possibly changed when k = i+1, and the positions of the 1’s in the matrix w is only changed
in columns i and i + 1. So the Lemma shows that the k-th column of f is unchanged for
k 6= i, i+ 1.

Finally, we address the case of k = ir. Using the Lemma, we need to show that the
(ir + 1)-st column of fr−1 is in the span of columns {ir, ir + 1, . . . , n} of gr, and has 1’s
and 0’s in the right places. The statement about 1’s and 0’s is clear. The span of columns
{ir, ir + 1, . . . , n} of gr is the same as the span of columns {ir, ir + 1, . . . , n} of gr−1, which
is the same as the span of those column in fr−1. The vector we are talking about is the
(ir + 1)-st column of fr−1, so it is clearly in the span of columns {ir, ir + 1, . . . , n}.

�

Proposition (Exercise 11.2). The span of the columns {ir + 1, ir + 2, . . . , n} of fr−1 is the
same as the span of the columns {ir, ir + 2, . . . , n} of fr. If k 6= ir + 1, then the span of the
columns {k, . . . , n} of fr−1 and fr have the same span.

Proof. We know that fi and gi give the same flags via the rightmost columns construction,
so it suffices prove the statement for gr−1 = xi1 · · ·xir−1 , gr = xi1 · · ·xir . The action of xir
on the right adds tr times the ith column of the matrix to the (i+ 1)st column: | |

· · · vir vir+1 · · ·
| |

 · xir−−→

 | |
· · · vir trvir + vir+1 · · ·

| |


with all other columns unchanged. Starting from the right and going to the left this

only (potentially) changes the span at the ir + 1th spot. However when we add the irth
column, the span of the columns to the right stabilises once again. Now passing again to the
description of fr−1 and fr we see that the spans of {ir + 2, . . . , n} in both fr and fr−1 must
be the same. And since we already showed that ir + 1 of fr−1 is equal to column ir of fr,
the result follows. For the general case we can pass to the gr−1 and gr once again and the
result follows from the fact that the flags are equal except for k = n− ir. �

Proposition (Exercise 11.3). Let q < r. The span of the {k, k + 1, . . . , n} columns of fq is
the same as the span of the {k, k + 1, . . . , n}siq+1 · · · sir columns of fr, where the si act as
elements of Sn on the right.
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Proof. We will induct on r − q. The previous proposition proves this in the case when
q = r − 1 (i.e. r − q = 1).

In the general case, we want to show that the {k, k + 1, . . . , n} columns of fq have the
same span as the {k, k + 1, . . . , n}siq+1 · · · sir columns of fr. The inductive hypothesis tells
us that

columns {k, k + 1, . . . , n} of fq

have the same span as

columns {k, k + 1, . . . , n}siq+1 · · · sir−1 of fr−1

We left the proof to be finished at the beginning of next class. �

October 27 – Finishing the inversion of the unipotent product

From last time, we recall that si1 · · · siN is a reduced word in Sn, t1, . . . , tN are positive
real numbers, and gr = xi1(t1) · · ·xir(tr). Letting wr := si1 · · · sir , we recall that fr is the
unique element of N−wr ∩ wrN+ whose columns (starting from the right) induce the same
flag as gr’s.

Fix some indices q, 1 ≤ q ≤ N , and k, 1 ≤ k ≤ n. We define Cq := {k, k + 1, . . . , n} and,
for r > q, Cr = Cqsiq+1siq+2 · · · sir .

When we last left off, we were proving the following proposition:

Proposition. The span of columns Cr of fr is independent of r.

Proof. We proceed by induction on r, showing that the span of columns Cr = Cr−1sir of fr
equals the span of columns Cr−1 of fr−1. This breaks into four cases:
Case 1. ir /∈ Cr−1, ir + 1 /∈ Cr−1.

In this case, columns Cr−1 of fr−1 are identical to columns Cr of fr.
Case 2. ir ∈ Cr−1, ir + 1 ∈ Cr−1.

We know from Exercise 11.1 from last time that fr differs from fr−1 only in columns ir
and ir+1, and that column ir of fr equals column ir + 1 of fr−1. We now claim further that
column ir + 1 of fr is a linear combination of columns ir and ir + 1 of fr−1.

To do this, we again use the Lemma from last time. Let wr = si1 · · · sir . Then we know
that column ir + 1 of fr is the unique vector in the span of columns ir + 1, . . . , n of gr with a
1 in row wr(ir + 1) and 0’s in columns wr(ir + 2), . . . , wr(n). We claim that there is a linear
combination of columns ir and ir + 1 of fr−1 which satisfies these properties.

First, any such linear combination is 0 in the appropriate places, because the lemma tells
us that columns ir and ir + 1 of fr−1 both are.

Second, we note that the span of columns ir + 1, . . . , n of gr (call it S) has codimension 1
inside the span of columns ir, . . . , n of gr, which is the same as the span of columns ir, . . . , n
of gr−1. This space equals the span of columns ir, . . . , n of fr−1, which also contains the
2-dimensional span of columns ir and ir + 1, which must then intersect S nontrivially.

Finally, we claim that the columns in this intersection have a nonzero entry in row wr(ir +
1), so in particular we can choose such a column with a 1 in the appropriate place by scaling.
Because si1 · · · sir is a reduced word, we have wr−1(ir) < wr−1(ir+1) and wr(ir) > wr(ir+1).
In particular, the first inequality implies that row wr(ir + 1) = wr−1(ir) of column ir + 1 of
fr−1 must be 0, since this entry lies above row wr−1(ir + 1). Thus any linear combination of
columns ir and ir + 1 of fr−1 which is 0 in row wr(ir + 1) must actually be a scalar multiple
of column ir +1 of fr−1, or equivalently column ir of fr. On the other hand, if such a column
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belonged to the span of columns ir + 1, . . . , n of gr (equivalently, of fr) it would imply that
columns ir, . . . , n of fr are linearly dependent, a contradiction.

Once we know that column ir + 1 of fr is a linear combination of columns ir and ir + 1 of
fr−1, we see that the span of columns Cr = Cr−1 of fr equals the span of columns Cr−1 of
fr−1.
Case 3. ir /∈ Cr−1, ir + 1 ∈ Cr−1.

In this case, columns Cr−1 of fr−1 are again identical to columns Cr of fr, by Exercise 11.1
from last time.
Case 4. ir ∈ Cr−1, ir + 1 /∈ Cr−1.

This case is impossible. This can be illustrated with a wiring diagram for our permutation,
such as the following one for s1s2s1s3s2s1.

1

2

3

4

Here we’ve marked in red the strands which keep track of the set Cr as we apply successive
transpositions. Case 1 corresponded to two black strands crossing; Case 2, to two red strands
crossing; and Case 3, to a red strand going up crossing a black strand going down. This case
would correspond to a red strand going down crossing a black strand going up. However,
because the red strands start out at the bottom, for this to happen those two strands would
necessarily have previously crossed. This cannot happen because we took our word to be
reduced. �

This proposition is the final step we need to recover the original parameters ti. We saw
previously that we can recover these parameters as ratios of certain right-justified minors of
the partial products gq. These match the corresponding right-justified minors of fq, because
the columns of fq and gq starting from the right determine the same flag. But the proposition
further shows that a right-justified minor of fq can be computed as a minor of the complete
product fN using columns {k, k + 1, . . . , n}siq+1siq+2 · · · sin .

Thus we now have maps

RN
>0

(N+ ∩B−wB−)>0

{M ∈ N−w ∩ wN+ | appropriate minors are positive}

RN
>0

(t1,...,tN )7→x1(t1)···xN (tN )

unique representative

the map we just constructed

whose composition is the identity.
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Furthermore, we know from previous results that each of the terms here is given by an
open subset of RN , thus an N -dimensional manifold, and the maps are given by rational
functions. From this we conclude that each map is an isomorphism.

Finally, we note, as we did when we parametrized the totally positive unipotent matrices,
that our inversion only required checking a certain subset of minors, so those minors give a
positivity test. This again clues connections with cluster algebras.

Specifically, we’re interested in terms of the form (top nonzero minor)/(bottom nonzero minor)
for various subsets of the columns. In our representation as an element of N−w ∩wN+ (the
f matrix above), each of these top nonzero minors will be 1, so the coordinates we need to
check for positivity (cluster variables) are reciprocals of bottom-justified minors. (There is
a ±1 which shows up here; we’ll account for this on PSet 6.)

Looking ahead, we’ll spend the rest of the course (before final presentations) consider-
ing two topics: general totally nonnegative matrices (rather than just unipotent ones) and
Postnikov’s totally nonnegative Grassmannian.

October 29 – Chevalley generators in GLn(R)

We recall
xi(t) = I + tei,i+1.

We now will want to work in addition with a second set of Chevalley generators,

yi(t) = I + tei+1,i.

These satisfy all the expected commutivity relations. We’ve proven these results for xi
already, but we recall them here. Fix i < n, j ≤ n with |i− j| ≥ 2

xi(R>0)xi+1(R>0)xi(R>0) = xi+1(R>0)xi(R>0)xi+1(R>0)

xi(R>0)xj(R>0) = xj(R>0)xi(R>0)

xi(R>0)xi(R>0) = xi(R>0)

Taking the transpose of these gives the associated relations for yi :

yi(R>0)yi+1(R>0)yi(R>0) = yi+1(R>0)yi(R>0)yi+1(R>0)

yi(R>0)yj(R>0) = yj(R>0)yi(R>0)

yi(R>0)yi(R>0) = yi(R>0)

We also have the following when i 6= j:

(1) xi(R>0)yj(R>0) = yj(R>0)xi(R>0)

This last follows from the matrix product (I + tei,i+1)(I + sej+1,j) = I + tei,i+1 + sej+1,j,
where we’ve used that ei,i+1ej+1,j = 0. A similar computation for the other side gives the
result.

We also introduce δj(t) = I + (t − 1)ej,j, in other words, an identity matrix with a t on
the jth diagonal entry instead of a 1. Since this is a diagonal matrix, we get the relations:

δi(R>0)δj(R>0) = δj(R>0)δi(R>0)

δi(R>0)xj(R>0) = xj(R>0)δi(R>0)

δi(R>0)yj(R>0) = yj(R>0)δi(R>0)

δi(R>0)δi(R>0) = δi(R>0).
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We also have the following new relation, giving us commutativity in the presence of ap-
propriate δ’s.

(2) xi(R>0)yi(R>0)δi(R>0)δi+1(R>0) = yi(R>0)xi(R>0)δi(R>0)δi+1(R>0)

This last one is new enough to warrant proof. We note that all the changes are happening
in the 2× 2 block containing the i and i+ 1st diagonal entries. So we can check the identity
there. Computing the product on both sides we find:(

a(1 + tu) bt
au b

)
=

(
a′ b′t′

a′u′ b′(1 + t′u′)

)
where a, b, t, u and their primes are the inputs to the left and right hand sides respectively.

Equating entries, we find that

a′ = a(1 + tu)

u′ =
u

1 + tu

t′ =
t

1− t(u/(1 + tu)
=
t(1 + tu)

1

b′ =
b

1 + t′u′

We note that since a, b, t, u are all positive, a′, u′, t′ and hence b′ are positive too. We can see
the other direction for positivity must hold by taking the transpose and using commutivity
of the δi.

With all of these relations in mind, we can finally identify4 the positive contents of
a double bruhat cell. Let u, v be permutations with reduced words si1si2si3 · · · si`(u) and
sj1sj2sj3 · · · sj`(v) respectively. We define Mu,v as

Mu,v :=
( `(u)∏
k=1

xik(R>0)
)( `(v)∏

k=1

yjk(R>0)
) n∏
k=1

δk(R>0)

Thanks to our commutivity relations, we know that we can rearrange this product a great
deal.

Proposition. Mu,v contains any product of xi(R>0), yj(R>0), δk(R>0), provided we have
at least one δk term for every k, and that if i1, . . . , iN and j1, . . . jM are the sequences of
subscripts of xi and yj respectively, then u = ei1 ∗ ei2 ∗ · · · ∗ eiN and v = ej1 ∗ ej2 ∗ · · · ∗ ejM
in the 0-Hecke Monoid.

The proof is really nice, we can arrange this product into the form we used to define M by
commuting the δk’s around and swapping all the xi’s to the left of any yj, using the identities
1 and 2.

We then observe

Proposition.
Mu,v ⊂ B−uB− ∩B+vB+

4Though not prove, yet. This is the eventual goal. If you are feeling impatient, see “Double Bruhat Cells
and Total Positivity” by Fomin and Zelevinsky. JAMS vol 12, 1999
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Which follows from the same proof as the previous. We will argue containment in B−uB−,
the other case is just the transpose. Rearrange the product of any element in Mu,v so that
all the xi terms appear first. We know from our unipotent work that the product of the xi
terms is in B−uB−, and it’s easy to see that the product of the yj’s and δks are contained in
B−. Hence the product is in B−uB−.

Going forward, we will introduce the LDU factorization of matricies in general (Those
with a computational background may already be familiar).

Our worksheet concluded with a fun problem, which we restate here:

Exercise. Show that there is a continuous (or better, polynomial) function g : R≥0 →
GLn(R) such that g(t) is totally postitive for t > 0 and g(0) = Idn.

Proof sketch. Choose a reduced word si1si2 · · · siN for the longest element of Sn, and put

g(t) = xi1(t)xi2(t) · · ·xiN (t)yi1(t)yi2(t) · · · yiN (t).

For t = 0, this is the identity. As a product of totally nonnegative matrices, it is totally
nonnegative and, since we used the longest word in Sn, it is in fact totally positive. �

November 5 – LDU decomposition, double Bruhat cells, and total
positivity for GLn(R)

Let X ∈ GLn. We define an LDU factorization of X to be an expression of X as a product
X = LDU with L ∈ N−, D diagonal and invertible and U ∈ N+.

Exercise (13.1). If X has an LDU factorization, then ∆
[k]
[k](X) 6= 0 for all 1 ≤ k ≤ n.

Proof. Using Cauchy-Binet, we compute

∆
[k]
[k](LDU) =

∑
J

∆
[k]
J (L)∆J

[k](DU)

= ∆
[k]
[k](L)∆

[k]
[k](DU)

= ∆
[k]
[k](L)

∑
J

∆
[k]
J (D)∆J

[k](U)

= ∆
[k]
[k](L)∆

[k]
[k](D)∆

[k]
[k](U)

= ∆
[k]
[k](D)

where we are using that ∆
[k]
[k](L) = ∆

[k]
[k](U) = 1 because the are lower/upper triangular

matrices with 1’s on the diagonal. So since D ∈ GLn, ∆
[k]
[k](X) 6= 0. �

Exercise (13.2). If X is an n× n matrix and ∆
[k]
[k](X) 6= 0 for all 1 ≤ k ≤ n, then X has an

LDU decomposition.

Proof. Since each ∆
[k]
[k](X) 6= 0, this means each upper left k × k submatrix of X has rank

k. So the upper left i× j submatrix has rank min(i, j), and using the Bruhat decomposition
we have X ∈ B−B+. �
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Exercise (13.3). If our decomposition is X = LDU , then

Lij =
∆

[j−1]∪{i}
[j] (X)

∆
[j]
[j](X)

for i > j, Uij =
∆

[i]
[i−1]∪{j}(X)

∆
[i]
[i](X)

for i < j

Djj =
∆

[j]
[j](X)

∆
[j−1]
[j−1](X)

Proof. From our work in Exercise 13.1, ∆
[k]
[k](X) = ∆

[k]
[k](D) = D11 · · ·Dkk. For the entries of

U , use Cauchy-Binet to compute

∆
[i]
[i−1]∪{j}(X) = ∆

[i]
[i](L)∆

[i]
[i−1]∪{j}(DU)

=
∑
J

∆
[i]
J (D)∆J

[i−1]∪{j}(U)

= ∆
[i]
[i](D)∆

[i]
[i−1]∪{j}(U).

Since U ∈ N+, taking rows in [i] and columns in [i − 1] ∪ {j} gives an upper triangular

matrix, whose diagonal entries are 1’s and then Uij. Thus ∆
[i]
[i−1]∪{j}(X) = ∆

[i]
[i](X)Uij.

For the entries of L, just take the transpose of everything in the argument for U . �

Now we would like to prove the following theorem:

Theorem. Suppose X is a totally nonnegative matrix in GLn. Then X has an LDU factor-
ization composed of TNN matrices.

Our first goal is to show that there is an LDU factorization at all, so we want to show

that ∆
[k]
[k](X) 6= 0. Since X ∈ GLn, we have ∆

[n]
[n](X) 6= 0. Now we proceed by contradiction,

and suppose there is some index m such that ∆
[m−1]
[m−1](X) = 0 but ∆

[m]
[m](X) 6= 0.

Exercise (14.1 & 14.2). The upper left m× (m− 1) and (m− 1)×m submatrices of X are

rank m− 1, and there exists some p, q such that ∆
[m]\p
[m−1](X) 6= 0 and ∆

[m]
[m]\q(X) 6= 0.

Proof. For the second part, note that if we expand along the last column, we get

∆
[m]
[m](X) =

m∑
i=1

(−1)i+mXim∆
[m]\i
[m−1](X) =

m−1∑
i=1

(−1)i+mXim∆
[m]\i
[m−1](X)

since ∆
[m−1]
[m−1](X) = 0. Since the sum is non-zero, there’s a non-zero minor of our desired form

∆
[m]\p
[m−1](X). This means we have m− 1 linearly independent rows in the m× (m− 1) upper

left submatrix of X, which gives our rank result.

To get the result for ∆
[m−1]
[m]\q (X) and the (m − 1) ×m upper left submatrix, do the same

thing but expand along rows. �

Exercise (14.3). Arrive at the contradiction using this identity from PSet 3:

∆
[m]
[m](X)∆

[m−1]\p
[m−1]\q(X) = ∆

[m−1]
[m−1](X)∆

[m]\p
[m]\q(X)−∆

[m]\p
[m−1](X)∆

[m−1]
[m]\q (X)

Proof. The left hand side is positive because X is totally non-negative. The first term on the

right hand side is zero because ∆
[m−1]
[m−1](X) = 0 by assumption. Including the negative sign,
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the second term is negative because by 14.2 both ∆
[m]\p
[m−1](X) and ∆

[m−1]
[m]\q (X) are non-zero, and

because X is TNN they are in fact both positive. This gives our desired contradiction. �

So now we know that ∆
[k]
[k](X) 6= 0 for all k, and thus by Exercise 13.2 X has an LDU

decomposition, X = LDU .

Exercise (14.4). The diagonal matrix D is totally non-negative since by Exercise 13.3, the
diagonal entries are just ratios of minors of X.

Exercise (14.5). Suppose X is totally positive. Then the left justified minors of L and the
top justified minors of U are both totally positive.

Proof. Multiplication by D only scales the minors by positive amounts. Right multiplication
by U is rightwards column operations, and thus doesn’t affect the left justified minors.
Similarly, left multiplication by L is downwards row operations, and thus doesn’t affect top
justified minors. �

We know that the left justified minors of a lower triangular matrix, or the top justified
minors of an upper triangular matrix form positivity tests, so this shows that L and U are
totally positive (in the sense for lower/upper triangular matrices) if X is totally positive.

Now we need to deal with the case that X is just totally nonnegative, but perhaps not
totally positive. REcall from last class that there exists a continuous (polynomial) function
g : R≥0 → GLn(R) such that g(t) is totally positive for t > 0 and g(0) = Idn. Let X ∈ GLn
be TNN.

Exercise (14.6). Show g(t)Xg(t) is totally positive for t > 0.

Proof. Use Cauchy-Binet yet again and see

∆I
J(g(t)Xg(t)) =

∑
L1,L2

∆I
L1

(g(t))∆L1
L2

(X)∆L2
J (g(t)).

The outer factors ∆I
L1

(g(t)) and ∆L2
J (g(t)) are each positive, and the inner factor is nonneg-

ative, so it is a sum of nonnegative terms. If L1 = L2 = [k], then the inner factor is in fact
positive, so there is at least one positive term, and so the whole sum is positive. �

We can now finally do Exercise 14.7 which is to finish the proof of the theorem: Let
X ∈ GLn be TNN. From a previous worksheet, we know that Y 7→ (L,D,U) is a continuous
map. If we precompose with the map t 7→ g(t)Xg(t), we get a continuous map

t 7→ g(t)Xg(t) 7→ (L(t), D(t), U(t)).

In particular, both L(t) and U(t) are continuous functions of T , and are TP for t > 0.
Thus they stay TNN if we take limt→0, and we get L(0) = L and U(0) = 0 from our
decomposition of X. Combined with Exercise 14.4, this completes the proof of the theorem
that TNN invertible matrices have TNN LDU decompositions.

Someone brought up a question of whether we really needed to take g(t)Xg(t). Could we
get away with just doing something like g(t)X? In fact we could! Since X is invertible, it
has enough non-zero minors that a similar argument would work, but we would have to work
harder to show that.
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Now that we know we can factor into TNN things, we want to see how this interacts with
our Bruhat decomposition. If we just intersect two Bruhat decompositions of GLn, we get
the double Bruhat cell decomposition

GLn =
⊔
u,v

(B+uB+ ∩B−vB−).

Exercise (15.1). If X ∈ B+uB+ ∩B−vB−, then L ∈ B+uB+ ∩N− and U ∈ B−vB− ∩N+.

Proof. By assumption, L ∈ N− and U ∈ N+. Since D scales and U does rightwards column
operations, X has the same left justified ranks as L, which means it’s in the same B+uB+

coset as X. Similarly, L does downwards row operations, so X has the same top justified
ranks as U , which means it’s in the same B−vB− coset. �

Exercise (15.2). Show (L,D,U) 7→ LDU is a diffeomorphism

(B+uB+ ∩N−)≥0 × Rn
>0 × (B−vB− ∩N+)≥0 → (B+uB+ ∩B−vB−)≥0

where the subscript ≥ 0 means ”TNN”.

Proof. From Worksheet 13, we know the map N−×T×N+ → {matrices with ∆
[k]
[k](X) 6= 0} is

a diffeomorphism, where T is the torus, i.e. the set of diagonal matrices. From Worksheet 14,
we know this restricts to a diffeomorphism (N−)≥0 × T>0 × (N+)≥0 → (GLn)≥0. Finally,
Exercise 15.1 shows that restricting to the double Bruhat cell on the right gives our desired
restriction on the left, and so we have our diffeomorphism. �

Now consider any product where each term is of the form xi(R>0), yj(R>0), δk(R>0) and
where each of δ1(R>0, . . . , δn(R>0) appears exactly once. Let i1, . . . , iM be the sequence of
subscripts of the xi factors and let j1, . . . , jN be the sequence of subscripts of the yj factors.
Suppose that si1si2 · · · siM is a reduced word for u and that sj1 · · · sjN is a reduced word for
v.

Exercise (15.3). Show that the product gives a diffeomorphism R`(u)+`(v)+n
>0 → (B+uB+ ∪

B−vB−)≥0.

Proof. From previous work, we know that the xi’s parametrize B+uB+∩N− correctly so that
we get a map (B+uB+ ∩N−) to RM

>0. Similarly the yj’s parametrize B−vB− ∩N+ correctly
so that we get a map (B−vB− ∩N+) to RN

>0. Combining this with our result above, we get
maps

B+uB+ ∩B−vB− (B+uB+ ∩N−)× T × (B−vB− ∩N+) RM
>0 × Rn

>0 × RN
>0

∼= ∼=

which give our desired result. �

November 10 – Kasteleyn labelings

Over the next few lectures, we will begin to discuss totally non-negative (tnn) points of

the Grassmannian. A point p ∈ G(k, n) ⊆ P(nk), considered in the Plücker embedding, is
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totally non-negative if all of its non-zero coordinates have the same sign. One question we
might ask is:

Question: How do we find tnn points of the Grassmannian?

One way to find tnn points of G(k, n) is to start with a tnn n × n matrix M (which we
can obtain from graphs via the Gessel-Lindström-Viennot lemma) and take the point in the
Grassmannian corresponding to the first k rows of M . Another way to obtain tnn points is
through dimer covers of a bipartite graph, which we explored today.

Definition. Let G be a bipartite graph. A dimer cover of G is a collection of edges that
covers each vertex exactly once.

Example. Let G be the 4-cycle bipartite graph (drawn below); the two possible dimer covers
are drawn on the right.

Figure 9. A bipartite graph G and its two dimer covers.

Kasteleyen was interested in finding a generating function for dimer covers of a bipartite
graph. A generating function can be obtained by weighting each edge of G and weighting a
dimer cover M by the product of weights of its edges. Returning to our example above:

Example. Let G be the 4-cycle bipartite graph (drawn below); the two possible dimer covers
are drawn on the right.

z

y

x

w

1 4

23

yw

1 4

23

z

x

1 4

23

wy + xz

Figure 10. A bipartite graph G and its two dimer covers.

Kasteleyn noticed that this generating function is almost the determinant of the adjacency
matrix (that is, the matrix with columns indexed by white vertices, rows indexed by black
vertices and entry (i, j) having the weight of the edge from white vertex i to black vertex j).
In our example, the adjacency matrix is [

w x
z y

]
and it has determinant wy − xz, which is very close to wy + xz.
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Definition. A Kasteleyen labelling for a bipartite graph G assigns weight κ(e) to each
edge, with the condition that

(−1)kκ(e1)κ(e3) · · ·κ(e2k−1) = κ(e2)κ(e4) · · ·κ(e2k)

whenever e1, e2, . . . , e2k−1, e2k are the (ordered) edges of a cycle C in G and G\C is matchable
(contains a matching).

The next proposition proves that the cycle condition on weights given in the definition
guarantees that the weighted edges will give the determinant the right signs

Proposition (Exercise 16.1). Let κ be a Kasteleyen labeling of G. Let Aκ be the matrix
formed by replacing x(e) by κ(e)x(e) in A. Show that

detAκ = c
∑
M

x(M)

for some scalar c.

Proof. Fix a dimer cover M0 on G; we will show that with a Kasteleyen labelling, all base
dimer covers have the same sign and coefficient as M0. Thinking of the determinant of the
adjacency matrix as a sum over σ ∈ Sn, we can relabel the vertices of G so that x(M)
corresponds to the identity permutation.

Key Observation: The (multi-graph) union of two matchings is a union of doubled edges
and cycles. This is clear because in each matching, each vertex has one edge, so in the union
each vertex has two edges. The only way this can happen is when the vertex lies on a cycle
or at the end of a doubled edge.

Moreover, if C is a cycle in M ∪M0, then the edges of M0 not in C give a matching on
the complement of C. Therefore, the complement of C is matchable, so the weights of its
edges satisfy the cycle condition in the definition of Kasteleyen labeling.

Therefore, we reduce to swapping one cycle between M,M0 at a time. For simplicty, we
reduce to the case where M0 ∪M = G is a cycle of length 2k (with odd edges in M0 and
even edges in M). Note that since we labeled the vertices so that M0 would correspond to
the identity permutation, the edges of M0 connect white vertex i to black vertex i and the
edges of M connect white vertex i to black vertex i− 1 (mod k).

After collapsing the edges of M0, we can read off the permutation corresponding to M . It
is a cycle of length k, so the sign on x(M) in the determinant is (−1)k−1. Now in detAκ,
x(M) gets the coefficient

sgn(σ)(−1)k−1κ(e2) · · ·κ(e2k) = κ(e1)κ(e3) · · ·κ(e2k−1)

since sgn(σ) = (−1)k−1 and because of the cycle condition. This is the coefficient (with the
same sign) of x(M) in detAκ. �
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Example (Exercise 16.2, 16.3). Find a Kasteleyen labelling for the graph below and find a
cycle C in G so that G \ C is not matchable. Does this cycle satisfy the cycle condition for
Kasteleyen labellings?

We can make an educated guess for the labelling: and one can check that this labelling

1 1 1

1 1 1

1 1 1
−1 1 −1 1

1 −1 1 −1

Figure 11. A Kasteleyen labelling.

is indeed a Kasteleyen labelling. The complement of the circuit highlighted below is not
matchable because the white vertex left in the middle cannot be matched.

1 1

1 1

−1 −1

11

Figure 12. A circuit whose complement is not matchable.

Starting from the leftmost bottom edge and going counter-clockwise, the odd edges have
product (1)(−1)(1)(1) = −1 and the even edges have product (1)(1)(1)(−1) = −1. But
the length of the cycle is 8, so (−1)8−1 = −1 and the even and odd edges should produce
opposite signs. Therefore, the circuit condition does not always hold when G \ C is not
matchable.

Remark. We will prove next class that when G is planar it is enough to check the cycle
condition on faces of G.

November 12 – Kasteleyn labellings continued

We continue from where we left off last time, discussing Kasteleyn labellings of bipartite
graphs.
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Exercise (16.4). Let G be a planar graph where every interior face is a disk and let κ be a
function from the edges of G to C×. Suppose that condition

(∗) (−1)k−1κ(e1)κ(e3) · · ·κ(e2k−1) = κ(e2)κ(e4) · · ·κ(e2k)

holds whenever e1, e2, . . . , e2k−1, ek2 is the boundary of a face of G. Show that this is a
Kasteleyn labelling.

Proof. Suppose cycle C = e1, . . . , e2k is such that its complement admits a matching. Since
this means that both any vertices inside of C and any vertices outside of C must be matched
separately, we can without loss of generality assume that C forms the boundary of our planar
graph. The intuition is that we can build C out of its interior faces, and that this will get
the conditions (∗) to fit together nicely.

More precisely, we need some way of assigning “even” versus “odd” edges of a cycle, since
our condition treats them differently. So for each face and for our cycle C, orient the edges
going clockwise and say that an edge is even if it goes from white to black within the cycle,
and it is odd if it goes from black to white within the cycle. Every interior edge thus appears
in exactly two faces with a different assignment in each. We can view (∗) as telling us the
sign when we quotient the weights of even edges by odd edges. So if we multiply together
the condition for each interior face, all of the interior faces will appear once in the numerator
and once in the denominator and thus will cancel, leaving us with a quotient of the even
exterior edges by the odd exterior edges.

In summary, so far we have shown that we could rewrite (∗) for C as

(−1)k−1 =
κ(e2)κ(e4) · · ·κ(e2k)

κ(e1)κ(e3) · · ·κ(e2k−1)
=

κ(e2)κ(e4) · · ·κ(e2k)

κ(e1)κ(e3) · · ·κ(e2k−1)
·
∏

e interior edge κ(e)∏
e interior edge κ(e)

=
∏

f interior face

∏
e even edge of f κ(e)∏
e odd edge of f κ(e)

Thus it suffices to show that that∏
f interior face

(−1)|f |/2−1 = (−1)k−1

where |f | means the number of edges on the boundary of face f . We can turn this into an
equation on the exponents, getting that we want∑

f interior face

(|f |/2− 1) ≡ k − 1 mod 2.

Since summing over interior faces counts each interior edge exactly twice and each exterior
edge exactly once, this means we can simplify to wanting to show

#(exterior edges)

2
+ #(interior edges−#(faces) ≡ #(exterior edges)

2
− 1 mod 2.

Cancelling the exterior edges term on each side, we want to show

#(interior edges)−#(faces) ≡ 1 mod 2.

Now recall Euler’s formula for planar graphs, which says that V − E + F = 1 where V ,
E, and F represent the number of vertices, edges, and faces, respectively. C being an even
length cycle, there must be an even number of vertices on the boundary of the graph. Since
G \ C is matchable, there must also be an even number of interior vertices. Thus V ≡ 0
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mod 2. And since again C is an even length cycle, E ≡ #(interior edges) mod 2. Thus
Euler’s formula becomes

0−#(interior edges) + #(faces) ≡ 1 mod 2

which is exactly what we wanted to prove. Thus the result holds. �

Exercise (16.5). Show that every planar bipartite graph has a Kasteleyn labelling. (If you
like, you may restrict to the case that every face bounds a disk, although you don’t need to).

Proof. Suppose we are in the case where every face bounds a disk. By the previous result,
we just need to show that our graph has a labelling which satisfies (∗) on faces. We will
induct on the number of faces. If there are no faces or just 1 face, the result clearly holds.
Now suppose there are n faces, and pick a face f which borders the boundary of the graph
on at least one edge. If we remove all such exterior edges in f , we get a bipartite planar
graph G′ with one fewer face than G. By induction, this G′ has a Kasteleyn labelling.

e

e

e

e

u

u

u

u
u

u

u

u

e

e

e

e

e

e

e

e

u

u

u

u
u

u

u

u

e

e

e

e

face f

Figure 13. On the left is the graph G. The face f is the face in the middle,
which has two edges bordering the boundary (highlighted). On the right is
the graph G′ which comes as a result of removing the exterior edges of f .

We now need to figure out how to assign weights to the edges we removed. If there are
multiple removed edges, assign all but one of them to have weight 1. Now we have a single
edge left to assign a weight. Suppose the boundary of this face f gives a cycle of length 2k.
Then if k is even, assign this edge to have weight (1, and if k is odd then we assign this
edge to have weight 1. By construction, this satisfies (∗) on face f and it doesn’t affect the
condition on the other faces we already labelled. Thus this construction satisfies (∗) on all
faces, and by Exercise 16.4 this means it is a Kasteleyn labelling for G. �

We discussed an alternate inductive approach to Exercise 16.4. It was not as nice of an
approach as the Euler formula method so we did not formalize it, but here was the big picture
idea: we induct on the number of faces inside the cycle. But in order to avoid issues with the
condition that G\C be matchable, we strengthen our induction hypothesis to the following.
We prove that if a cycle has an even number of interior vertices it satisfies condition (∗);
if a cycle has an odd number of interior vertices then condition (∗) is off by a sign. Then
we could proceed similarly to in the proof of Exercise 16.5 by peeling off an interior face
bordering the cycle and checking that the conditions work out.

We also discussed proof techniques. One group was running into messiness with the
inductive approach. The issue was that they were approaching things via starting from a
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graph and adding one more face, as opposed to the above which starts with the graph and
removes a face. While these seem similar, in this case thinking from the perspective of
removing a face made the arguments easier to state clearly.

November 17 – Using graphs in a disc to parametrize the totally
nonnegative Grassmannian

Let G be a graph embedded in a disc D such that all the vertices on ∂(D) are white. We’ll
write ∂(G) for these white boundary vertices, W0 for the interior white vertices and B for
the black vertices. Let #(W0) = m, #(B) = m + k and #(∂(G)) = n, and fix a labeling of
∂(G) by [n] in counterclockwise order.

We’ll define an almost perfect matching M to be a collection of edges which covers
every vertex in B ∪W0 exactly once, and every vertex in ∂(G) at most once. For an almost
perfect matching M , define ∂(M) to be the set of edges in ∂(G) which are covered by M .
For a k-element subset I of [n], define

µI(G) =
∑

∂(M)=I

x(M).

We call the µI the boundary measurements of G. To avoid silly cases, assume that G
has at least one almost perfect matching.

We discussed the following result:

Theorem. Let A be the (m + k) × (m + n) adjacency matrix of G. Show that there is a
Kasteleyn labeling κ of G such that ∆B

W0∪I(A
γ) = µI(G).

We sketched two proofs and didn’t finish either. We then showed

Theorem. Let Aκ be as above. There is a k × n matrix B such that ∆I(B) = ∆B
W0∪I(A

κ).

Proof sketch. BecauseG has an almost perfect matching, there is some I0 for which ∆B
W0∪I0(A

κ)
is nonzero. Thus, the submatrix in columns W0 ∪ I0 has rank m + k. We deduce that the
submatrix in columns W0 has rank m, and thus there is some subset B0 of B such that
∆B0
W0

(Aκ) is nonzero. Thus, if we sort rows B0 and columns W0 to the top/left, our matrix
looks like [

S T
U V

]
with S invertible. Left multiplying by an appropriate matrix, which will not change the
minors in question, we can replace this by[

Id ∗
0 B

]
.

The new matrix B in the lower right then has the required property. �

November 19 – cyclic rank matrices

Definition. Let M be a k × n matrix of rank k. For any i ∈ Z, let Mi be the column of M
whose position is i mod n. For a ≤ b, define

rab(M) = rank (Ma,Ma+1,Ma+2, . . . ,Mb)

It is also convenient to put ri(i−1)(M) = 0.
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Problem. Show that, for any M , the matrix rij(M) has the following properties:

(1) r(i+1)j ≤ rij ≤ r(i+1)j + 1 and ri(j−1) ≤ rij ≤ ri(j−1) + 1
(2) If r(i+1)(j−1) = r(i+1)j = ri(j−1) then rij = r(i+1)(j−1)

(3) rij = k if j ≥ i+ n− 1
(4) rij = r(i+n)(j+n)

Proof. (1) In the first case if i = j then the problem is trivial. So assume that i < j and
i 6≡ j mod n. In this the problem reduces to saying that adding a vector to a list
of vector can at-most increase the dimension by 1, which is self evident. The second
part is similar.

(2) In this case we see that if j > i+n then the rank stabilises. For the case i < j < i+n,
this is equivalent to saying that if we have a finite list of vectors to which we append
two more vectors such that neither of them change the dimension of the span, then
the two vectors must be in the span of the original list.

(3) This is clear since the rank of M is k and it has n columns.
(4) This is clear by cyclicity.

�

Definition. We define a matrix rij obeying the conditions of the previous problem (for some
parameters (k, n) to be a cyclic rank matrix.

Problem. Let r be a cyclic rank matrix. For each i ∈ Z, show that there is a unique index
f(i) such that

rif(i) = r(i+1)f(i) = ri(f(i)−1) = r(i+1)(f(i)−1) + 1

Proof. For every j, we have rij − r(i+1)j ∈ {0, 1}. For j sufficiently positive, rij = r(i+1)j = k,
so rij − r(i+1)j = 0. For j sufficiently negative, we have rij − r(i+1)j = (−i+ j + 1)− (−(i+
1) + j + 1) = 1. So there must be some index j for which ri(j−1) − r(i+1)(j−1) = 1 and
rij− r(i+1)j = 0. Let j be such an index. We have 0 ≤ rij− ri(j−1) and r(i+1)j− r(i+1)(j−1) ≤ 1
and so −rij+r(i+1)j−ri(j−1)+r(i+1)(j−1 ≤ 1. But we have −rij+r(i+1)j−ri(j−1)+r(i+1)(j−1 = 1,
by subtracting the two previous equations, so we must have equalities: 0 = rij − ri(j−1) and
r(i+1)j − r(i+1)(j−1) = 1. So we have rij = r(i+1)j = ri(j−1) = r(i+1)(j−1) + 1

We now establish uniqueness. Suppose, for the sake of contradiction, that we have two
indices j1 < j2 with rij1 = r(i+1)j1 = ri(j1−1) = r(i+1)(j1−1) + 1 and rij2 = r(i+1)j2 = ri(j2−1) =
r(i+1)(j2−1) + 1. Then there must be some j with j1 < j ≤ j2 with ri(j−1) = r(i+1)(j−1) and
rij = r(i+1)j + 1. But the inequalities rij − ri(j−1) ≤ 1 and 0 ≤ r(i+1)j − r(i+1)(j−1) then force
ri(j−1) = r(i+1)(j−1) = r(i+1)j = rij − 1, contradicting the second condition in the definition of
a cyclic rank matrix. �

Problem. Let r be a cyclic rank matrix and let f : Z → Z be the function defined in the
previous problem. Show that

(1) f : Z→ Z is a bijection.
(2) f(i+ n) = f(i) + n
(3) i ≤ f(i) ≤ f(i) + n = i+ n
(4) 1

n

∑n
i=1(f(i)− i) = k

Proof. (1) To prove surjectivity, fix an index j we then have that for i = j we have
ri,j−1 = 0 and ri,j = 1. Moreover ri,j−1 ≤ ri,j and for small enough i we must have
ri,j = k. Repeating the same argument as in the problem on the existence of f(i),
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we see that there must be a unique index i so that f(i) = j. But this also shows
injectivity.

(2) This is clear by periodicity since ri+n,j+n = ri,j.
(3) It is clear that f(i) ≥ i. Now rij = k if j ≥ i+ n− 1 and ri+1,j = k if j ≥ i+ n and

so the result follows.
(4) In each row i there are k-places Ii := {j1

i , . . . , j
k
i } where the rank increases.

Now suppose i is such that rii = 1, then note that i ∈ Ii and moreover we must
have that f(i) ∈ Ii+1. Further note that if i /∈ Ii then we must have rii = 0 and
moreover f(i) = i.

All in all we have

Ii+1 = (Ii \ {i}) ∪ {f(i)}.
Taking sum we must then have∑

j∈Ii+1

j =
∑
j∈Ii

j + (f(i)− i).

Then we have ∑
i∈[n]

(f(i)− i) =
∑
i∈[n]

(
∑
j∈Ii+1

j −
∑
j∈Ii

j)

=
∑
j∈Ii+n

j −
∑
j∈Ii

j

= k + . . .+ k︸ ︷︷ ︸
n times

= nk.

Thus the result follows.
�

Definition. We will define a function f obeying these conditions to be a bounded affine
permutation of type (k, n).

Problem. Show that cyclic rank matrices are in bijection with bounded affine permutations
(for the same (k, n))

While we did not give a proof of this in detail we remarked that since we have shown
one direction, namely that given a cyclic rank matrix, one can construct a bounded affine
permutation. To go the other way one proceed as in the case of permutation matrices and
rank matrices.

Another remark that was made was that it is not clear that such cyclic rank matrices are
realised i.e. if it is possible to actually write down a matrix so that its cyclic rank matrix is
the one given. We will discuss this after break.

We finally ended with some remarks by Prof. Speyer on some combinatorial culture which
might be discussed in detail after the break.

Bounded affine permutations and cyclic rank matrices are in fact two of about half a
dozen combinatorial objects which are all in bijection with each other. These are a family of
objects discovered by Alexander Postnikov (although though these particular examples were
discovered by Speyer, Knutson and Lam).

We give a quick list of other objects in the family above.
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• Cyclic rank matrices (Knutson, Lam and Speyer),
• Bounded affine permutations (Knutson, Lam and Speyer),
• Decorated permuations i.e. permutations with fixed points colored in two distinct

colors (Postnikov),
• All possible rank matrices of (k, n) matrices (Knutson, Lam and Speyer),
• All possible patterns of which minors vanish on the totally non-negative Grassmanian,
G(k, n)tnn (Postnikov),
• All oriented matroids of rank k on [n] where the corresponding ‘chirotope’ is totally

non-negative (Ardila, Rincon and Williams),
• Grassman necklaces (I1 mod n, I2 mod n, . . . , In mod n) (Postnikov),

and many more . . . .
The above area gets labelled by the word “positroids”.

December 1 – More on cyclic rank matrices

Today we continued talking about cyclic rank matrices. Recall that given a full rank k×n
matrix M (with columns Mi) the dimension of the linear span of the ith through jth columns
Mi,Mi+1, . . . ,Mj (all indices modulo n), when i ≤ j. When i > j, we adopt the convention
that rij = −i+ j + 1.

Cyclic rank matrices satisfy and are determined by the following axioms:

(1) r(i+1)j ≤ rij ≤ r(i+1)j + 1 and ri(j−1) ≤ rij ≤ ri(j−1) + 1.
(2) If r(i+1)(j−1) = r(i+1)j = ri(j−1), then rij = r(i+1)(j−1).
(3) rij = k if j ≥ i+ n− 1.
(4) rij = −i+ j + 1 if i > j.
(5) rij = r(i+n)(j+n).

We can also define a bounded affine permutation of type (k, n) f : Z→ Z from our
cyclic rank matrix via f(i) = j if and only if rij = r(i+1)j = ri(j−1) = r(i+1)(j−1) + 1. Recall
that a bounded affine permutation are determined by the following axioms:

(1) f : Z→ Z is a bijection.
(2) f(i+ n) = i+ n.
(3) i ≤ f(i) ≤ i+ n.
(4) 1

n

∑n
i=1(f(i)− i) = k.

Proposition (Exercise 19.1). Let M be a full rank k × n matrix with corresponding cyclic
rank matrix r and bounded affine permutation f . We have:

(1) f(i) = i if and only if Mi = 0.
(2) f(i) = i+ 1 if and only if Mi and Mi+1 are parallel, nonzero vectors.
(3) f(i) = i+ n if and only if Mi is not in the span of Mi+1, . . . ,Mi+n−1.

Proof. (1) By definition f(i) = i if and only if

rii = r(i+1)i = ri(i−1) = r(i+1)(i−1) + 1

Since i+ 1 > i− 1, we can determine the leftmost term:

r(i+1)(i−1) = −(i+ 1) + (i− 1) + 1 = −1

Therefore, rii = 0, so we must have Mi = 0.
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(2) By definition f(i) = i+ 1 if and only if

ri(i+1) = r(i+1)(i+1) = rii = r(i+1)i + 1

Again i+ 1 > i, so

r(i+1)i = −(i+ 1) + i+ 1 = 0

Therefore ri(i+1) = 2, which can only happen if Mi,Mi+1 are parallel, nonzero vectors.
(3) By definition f(i) = i+ n if and only if

ri(i+n) = r(i+1)(i+n) = ri(i+n−1) = r(i+1)(i+n−1) + 1

Note that the term ri(i+n−1) is the rank of all the columns, which we know is k.
Moreover, this is one greater than r(i+1)(i+n−1), which represents the rank of all the
columns except Mi. Thus, Mi cannot be in the span of the other columns.

�

Proposition (Exercise 19.2). We have f(i) = j if and only ifMi ∈ Span(Mi+1, . . . ,Mj−1,Mj)
and Mi 6∈ Span(Mi+1, . . . ,Mj−1). (This observation was made by Allen Knutson.)

Proof. Mi ∈ Span(Mi+1, . . . ,Mj−1,Mj) implies that rij = r(i+1)j. Also, Mi /∈ Span(Mi+1, . . . ,Mj−1)
implies ri(j−1) = r(i+1)(j−1) + 1.

Now since Mi ∈ Span(Mi+1, . . . ,Mj−1,Mj) but Mi /∈ Span(Mi+1, . . . ,Mj−1), that means
we can write Mi as a linear combination of Mi+1, . . . ,Mj−1,Mj with the coefficient of Mj

nonzero. Thus, we can solve for Mj in terms of Mi,Mi+1, . . . ,Mj−1, so rij = ri(j−1).
Putting it all together, we get

rij = ri(j−1) = r(i+1)j = r(i+1)(j−1) + 1 ⇐⇒ f(i) = j

�

Now fix an index i and consider rij with j increasing from i to i + n− 1. The matrix M
has rank k, so there are k indices (corresponding to the pivot columns) where rij increases

as we increase j. We call this set of pivot indices Ĩi and denote its reduction modulo n by
Ii. Note that the subscripts are cyclic modulo n.

Proposition (Exercise 19.3). We can reconstruct f from Ii by the following recipe:

(1) If i 6∈ Ii, then f(i) = i.
(2) If i ∈ Ii and Ii = Ii+1, then f(i) = i+ n.

(3) If i ∈ Ii and Ii 6= Ii+1, then f(i) is determined by the conditions that Ii+1\Ii = {f(i)
n
}

and i ≤ f(i) < i+ n.

Proof. (1) The only way that the first column of a matrix can fail to be a pivot column
is if it is zero, so if i 6∈ Ii, Mi = 0. By Exercise 19.1(1), this happens if and only if
f(i) = i.

(2) By the same argument as above, i ∈ Ii implies that Mi 6= 0. Also, i ∈ Ii+1 if and
only if i 6∈ Span(Mi+1, . . . ,Mi+n−1). Thus by 19.1(3), f(i) = i+ n.

(3) By Exercise 19.2, Mi ∈ Span(Mi+1, . . . ,Mf(i)−1,Mf(i), but not in Span(Mi+1, . . . ,Mf(i)−1).
Therefore, Mf(i) is a pivot column when starting at i + 1, but not when starting at
i. In other words, f(i) ∈ Ii+1, f(i) 6∈ Ii.

Moreover, if j 6= i is a pivot index when starting at i, it must also be a pivot index
when starting at i+ 1, hence Ii \ {i} ⊆ Ii+1. It follows that Ii+1 \ Ii.
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Now we know f(i) modulo n and we know that i < f(i) < i + n (since Mi 6= 0,
f(i) 6= i), so we can uniquely determine f(i).

�

Corollary (Exercise 19.4). Define a Grassmann necklace of type (k, n) to be a sequence
(I1, I2, . . . , In) of k-element subsets of [n] such that, for each i, we have Ii \ {i} ⊆ Ii + 1.
Show that Grassmann necklaces are in bijection with bounded affine permutations of type
(k, n).

For the remainder of the course, we will continue to focus on the connection between the
totally non-negative Grassmannian G(k, n)≥0 and other combinatorial objects. Here is our
main goal:

Theorem. Let V be a point of G(k, n)≥0. Then there is a planar graph G, with positive
weights on the edges of G, such that µI(G) = ∆I(V ).

Our goal will be to show that every point of G(k, n)≥0 is the boundary measurement of a
planar bipartite graph.

Here are all the things that we sadly won’t get to:

(1) Looking at a graph, all of the points of G(k, n)≥0 it gives have the same cyclic rank
matrix. This is easy to prove and an analogue of the 0-Hecke product.

(2) There are “reduced” graphs for which this gives a diffeomorphism between points of
G(k, n)≥0 with specified cyclic ranks and RL

>0. This is an analogue of reduced words.
See Postnikov, Total Positivity, Grassmannians and Networks.

(3) There are explicit formulas to invert this map. This is the analogue of the ratio of
minors. See Muller and Speyer, The twist for positroid varieties.

(4) Any two reduced graphs with the same cyclic ranks are linked by certain mutations.
This is the analogue of reduced words being linked by braid moves. Postnikov has a
sketchy proof. You can find better proofs in D. Thurston, From dominos to hexagons
or in Oh and Speyer, Links in the complex of weakly separated collections, which
builds on Oh, Postnikov and Speyer Weak Separation and Plabic Graphs.

We now start proving the Theorem. Let V ∈ G(k, n)≥0 and let f be the corresponding
decorated permutation. Our first goal is to reduce to the case that i < f(i) < i+ n for all i.
To do this, we introduce two transformations which turn a planar graph G with n boundary
vertices into modified graphs G◦ and G• with n+ 1 boundary vertices.

Let G be a planar bipartite graph, embedded in the plane so that the boundary vertices
(all white) lie on a circle and the remaining vertices lie in the interior of the circle. We let
#(W0) = m be the number of white interior vertices, #(B) = m+ k be the number of black
vertices, and #(∂G) = n be the number of boundary vertices. We also fix a labelling of ∂G
by [n] in counterclockwise order.

There are two ways we will add a boundary vertex to G, shown in Figure 14. The first,
G◦, is made by adding just a white vertex in position i. The second, G•, is made by adding
a white vertex in position i, adding a new black vertex to the interior and connecting the
two new vertices with an edge. This operation is known as adding a lollipop.

The graphs G, G◦ and G• each correspond to a bounded affine permutation f , f◦, f• of
types (k, n), (k, n+ 1) and (k + 1, n+ 1) respectively.

Proposition (Exercise 20.1). We have f◦(i) = i and f•(i) = i + (n + 1). Then for i + 1 ≤
j ≤ i+ n, we have f◦(j) = f•(j) = f(j).
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i+ 1

i+ n

G

i+ 1

i+ n

G◦

i

i+ 1

i+ n

G•

i

Figure 14. The two ways to add lollipops.

Proposition (Exercise 20.2). Let f, f◦, f• be bounded affine permutations as above. There
are isomorphisms between the regions of G(k, n), G(k, n+1) and G(k+1, n+1) with bounded
affine permutations f, f◦ and f•. More specifically, if M , M◦, M• are corresponding matrices,
we have ∆I(M) = ∆I(M◦) = ∆I∪{i}(M•) for I ⊆ {i + 1, . . . , i + n}; we have ∆J(M◦) = 0 if
i ∈ J and ∆K(M•) = 0 if i 6∈ K.

Proof. In G•, if i /∈ I then µI(G•) = 0 because Mi is not in the span of the other n − 1
columns. The corresponding matrix is:

M• =

[
1 0
0 M

]
In G◦, if i ∈ I, then µI(G◦) = 0 because i is not part of any matching (since it is not

connected to any black vertices). If i /∈ I, then µI(G) = µI(G◦) because there are no new
matchings. The corresponding matrix is:

M◦ =

 | | |
0 Mi+1 · · · Mi+n−1

| | |


�

December 3 – Bridges and Chevalley generators

Previously we saw that we can get a bounded affine permutation f from a given element
of G(k, n) by looking at the relative ranks of column intervals. Today we will show that for
every f there is also an element of G(k, n) that has f as its affine permutation. For this we
will need two graph constructions:

(1) Lollipops
Where we’ve created a new boundary vertex ν between i and i+ 1, attached either

to nothing or to a new black vertex. The interior of G remains unchanged otherwise.
Both open and closed (the subscript open/filled circle) versions of this increase the
dimension of the matrix M associated with G. We saw how these affected the matrix
earlier, and by Knutson’s observation (see problem 19.2) it follows that these add
either a fixed point of f or a point where f(i) = i+ n.

(2) Bridges
This one is new. We create a total of 4 new verticies for our graph, two of which

replace the boundary verticies i, i + 1 from the boundary of G′ (I’ve marked the
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Figure 15. The two Lollipop gifts

Figure 16. Building a Bridge

boundary verticies of G′ with subscripts, and likewise for G. jG′ = jG for j distinct
from i, i + 1.) We attach 5 new edges, marked in red, exactly one of which has
weight t, while the rest are weight 1. To think about how this changes the boundary
measurements of G′, and hence f, it suffices to draw the possible matchings on these
new elements (matched edges in blue).

As a consequence of these cases, let I be a k-element subset of [n]. Then the
boundary measurements of G (our graph after having a bridge) and G′ (Our graph
before bridge building) obey the following:
(a) If i+ 1 6∈ I then µI(G) = µI(G′)
(b) If i+ 1 ∈ I and i 6∈ I then µI(G) = µI(G′) + tµI−{i+1}∪{i}(G′)
(c) If i, i+ 1 ∈ I then µI(G) = µI(G′)
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Figure 17. The possible matchings of the new edges.

If M and M ′ are the matrices associated to G and G′ respectively, then we can
get the minors of M and M ′ to be related in this way if we replace M ′

i with Mi =
M ′

i + tM ′
i+1. In other words, we replace M by Mxi(t) where xi is the Chevalley

generator from earlier. (Remark: if i = n, the Chevalley generator “wraps around.”
This is related to the affine Kac-Moody group of type Ã.)

To see how this transformation changes our bounded affine permutation, we pro-
ceed as follows: Assume that f ′(i) > f ′(i+1). First, note that rank(Ma,Ma+1, . . . ,Mb)
is unchanged whenever a 6= i+ 1, so we should only expect f(i) and f(i+ 1) to possi-
bly change. Once we identify how one of these has changed, the other follows since f
must be a bijection. It turns out that f(i) = f ′(i+ 1) and f(i+ 1) = f ′(i). Applying
Knutsons observation we know that:

M ′
i ∈ Span(M ′

i+1, . . . ,M
′
f ′(i))

M ′
i 6∈ Span(M ′

i+1, . . . ,M
′
f ′(i)−1)

and

M ′
i+1 ∈ Span(M ′

i+2, . . . ,M
′
f ′(i+1))

M ′
i+1 6∈ Span(M ′

i+2, . . . ,M
′
f ′(i+1)−1)

Therefore

Mi+1 = M ′
i+1 + tM ′

i ∈ Span(M ′
i+2, . . . ,M

′
f ′(i)) = Span(Mi+2, . . . ,Mf ′(i))

as both M ′
i and M ′

i+1 are in this span. However

Mi+1 = M ′
i+1 + tM ′

i 6∈ Span(M ′
i+2, . . . ,M

′
f ′(i)−1) = Span(Mi+2, . . . ,Mf ′(i)−1)

As if it were, we would have M ′
i in the span of M ′

i+1, . . . ,M
′
f ′(i)−1. Contradicting

Knutson’s observation for f ′(i).
Let Ii be the column indicies (modulo n) where rij increases. By the previous, we

know that Ij = I ′j for j 6= i+ 1 and Ii+1 = I ′i+1 \ {f(i)} ∪ {f(i+ 1)}, as these are the
only spans that changed.

This completes problems 21.1 through 21.3 from the worksheets.
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Now, with these two operations in mind: Suppose we have some bounded affine permuta-
tion f of type (k, n). If f(i) = i then we may reduce f by removing every integer m = i(n),
and reindexing the remaining integers (preserving the linear order). Call the result f ′. In
other words, if σ : Z→ Z is the order preserving bijection with σ(j + n− 1) = σ(j) + n and
σ(Z) = {x ∈ Z : x 6≡ i mod n}, then f(σ(x)) = σ(f ′(x)). We apply an identical transfor-
mation if instead f(i) = i + n, deleting all of these fixed points mod n and regrouping the
reindexing.

Why can we make these transformations? Because they are exactly redone by giving our
graph G a lollipop of one kind or the other5. If we find a matrix corresponding to this affine
permutation, then we will be able to find one for f .

Going forward, we will assume f has no fixed points modulo n.
Our last few observations tell us how we can simplify our permutation to one with fixed

points. First, notice that every f will have some index where f(i) < f(i + 1), as bounded
permutations cannot decrease for very long. We have to stay above our input: f(i) ≥ i. Let
i be such an index. We change f to f ′ as follows:

f ′(j) =


f(j) for j 6= i, i+ 1(n)

f(i+ 1) for j = i(n)

f(i) for j = i+ 1(n)

Note the similarity to how adding a bridge transformed the associated permutation. It
remains only to check that f ′ is also a bounded affine permutation.

(1) f ′ is a bijection.
This follows from the definition, we have only rearranged the outputs of f.

(2) f ′(j + n) = f ′(j) + n.
Observe that we have defined the outputs modulo n, and that f satisfies these

equalities. So we will too.
(3) j ≤ f ′(j) ≤ f ′(j) + n.

This is where we need that f has no fixed points, and hence these inequalities are
strict for f. Hence we satisfy these inequalities for all j 6= i, i+ 1 modulo n. Now we
check

i < i+ 1 < f ′(i) = f(i+ 1) ≤ i+ n

i+ 1 ≤ f(i) = f ′(i+ 1) < i+ n < i+ n+ 1

(4) 1
n

∑n
j=1(f ′(j)− j) = k.

Note we have only rearranged the values appearing in this sum, so it is preserved.

So now we need only realize we’re done! First, convince yourself we can make a graph
(and hence matrix) with any given bounded affine permutation when n is sufficiently small.
Then note that our simplifying operations on f correspond to taking lollipops and burning
bridges, so that we can reverse them by the corresponding operations. Then, finally, observe
that we can only perform the swap operation from f to f ′ so many times before creating a
fixed point, so we can argue by induction on n that every bounded affine permutation comes
from a graph!

5If you like, in this step we are taking candy from a Matrix.
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What remains to show that we can represent every element of G(k, n)≥0. Following the
strategy of this approach, we take a matrix M with bounded affine permutation f , find an
index i and try to write M as M ′xi(t) where M ′ is totally nonnegative with permutation
f ′. If we can do this, we win. Inductively, we can assume that M ′ comes from a graph G′,
and we can then add a bridge to G′ to make a graph G for M . Note that the choice of
M ′ is determined by t, since M ′ = Mxi(−t). But we need to choose t very carefully! If t
is too large, then Mxi(−t) won’t be totally positive. If t is too small, then Mxi(−t) will
have the same bounded affine permutation as M , rather than dropping ranks to make a new
permutation f ′.

December 8 – finishing the proof

Our goal is to show that any point of the totally nonnegative Grassmannian can be ob-
tained as the boundary measurements of some planar bipartite graph. Last time, we showed
a weaker result: any bounded affine permutation can be obtained from a point of the totally
nonnegative Grassmannian given by the boundary measurements of some planar bipartite
graph. Today, we’ll refine the argument from last time to finish off the main result.

Our proof will have the same inductive structure as the one given last time. Let M be
a matrix representing a point of the totally nonnegative Grassmannian and let f be its
associated affine permutation. If f(i) = i or f(i) = i + n, we’ve already seen that this
corresponds to the ith column of M being 0 or linearly indepedent of all the other columns
(respectively), and that if M ′ is the matrix obtained by removing that column, we can obtain
a graph for M from a graph for M ′ by adding a lollipop.

Then if f doesn’t have any fixed points, we proceed as follows:

• Find an index i such that f(i) < f(i+ 1).
• Define the permutation f ′ by

f ′(j) =


f(j + 1) j ≡ i mod n

f(j − 1) j ≡ i+ 1 mod n

f(j) otherwise

• Find a matrix M ′ associated to the bounded affine permutation f ′, such that M =
M ′xi(t) for some positive t. Then if M ′ is given by the boundary measurements
of a graph G′, we can obtain a graph G whose boundary measurements give M by
appending a bridge to G′, as detailed last time.

By repeatedly performing swaps on our bounded affine permutation as indicated above, we
will eventually reach one that has a fixed point mod n. We can then reduce n with the
lollipop technique and continue.

This argument is laid out in detail on Worksheet 22, which we now summarize.
First, consider the case that f(i) = i + 1. In this case, we can simply define our matrix

M ′ by replacing the (i+ 1)th column of M with 0’s.

Proposition (Problem 22.1). In this case, M = M ′xi(t) for some positive t, and M ′ has
bounded affine permutation f ′.

Proof. In general, f(i) = j means that Mi lies in the span of Mi+1, . . . ,Mj, but not in the
span of Mi+1, . . . ,Mj−1. In particular, f(i) = i + 1 means that Mi is a scalar multiple of
Mi+1, but not 0. So suppose that Mi+1 = tMi for some t. Then M = M ′xi(t) (we add t
times the ith column to the 0 column of M ′, filling in Mi+1).
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Then let f ′′ be the bounded affine permutation of M ′. We have f ′′(i + 1) = i + 1 = f(i)
(since the column is 0) and f ′′(j) = f(j) for j 6= i, i+ 1 (since zeroing out column i+ 1 does
not change the spans relevant to calculating these values). Thus f ′′ = f ′. �

This completes the above steps when f(i) = i + 1, so we now assume that f(i) > i + 1.
We write f(i) = a and f(i+ 1) = b. By our assumptions, we have i+ 1 < a < b < i+ n− 1.
We first nail down precisely how the Grassmann necklace of M behaves.

Proposition (Problem 22.2). There is a (k − 2)-element subset R of [n] such that

Ii = R ∪ {i, i+ 1}
Ii+1 = R ∪ {i+ 1, a}
Ii+2 = R ∪ {a, b}

Proof. Our assumption that f(i) > i + 1 means that i is not a scalar multiple of Ii+1. In
particular, Mi 6= 0, so i ∈ Ii and Mi+1 (itself nonzero, because f(i + 1) > i + 1) is linearly
indepdent of Mi, so i+ 1 ∈ Ii. Thus we define R = Ii\{i, i+ 1}.

We then need to show that Ii+1 = Ii\{i} ∪ {a}. If i ∈ Ii+1, that would imply that Mi

is linearly independent of all other columns of M , or equivalently that f(i) = i + n, a
contradiction. All the elements of Ii other than i still index pivot columns, so it remains to
show that a is in Ii+1 but not Ii. Since Mi is a linear combination of Mi+1, . . . ,Ma but not
of Mi+1, . . . ,Ma−1, Ma must be linearly independent of Mi+1, . . . ,Ma−1, so it lies in Ii+1, but
it is dependent with Mi, . . . ,Ma−1, so it is not in Ii.

Finally, we show that Ii+2 = Ii+1\{i + 1} ∪ {b}. This follows from the same reasoning as
above, with i replaced by i+ 1 and a replaced by b. �

Knowing these pivot sets, we can then prove that a key minor of M is nonzero. We adjust
notation once more to write S = R ∪ {a}.
Proposition (Problem 22.3).

∆S∪{i}(M) > 0.

Proof. We have the Plücker relation

∆R∪{i,a}∆R∪{i+1,b} = ∆R∪{i,b}∆R∪{i+1,a} + ∆R∪{i,i+1}∆R∪{a,b}

Then by the previous result, both of the multiplicands of the rightmost term are nonzero
(since they’re indexed by pivot sets). Since M is totally nonnegative, the whole expression
must then be positive. In particular, since the left side is nonzero, ∆R∪{i,a} = ∆S∪{i} is
nonzero (and thus positive). �

With this setup, we can now define the matrix M ′. Let

t =
∆S∪{i+1}(M)

∆S∪{i}(M)

(which is well-defined by the previous proposition) and let

M ′ = Mxi(−t).
First, we check that our parameter t actually is positive, so that our graph will still have

positive edge weights:

Proposition (Problem 22.4).
t > 0.



57

Proof. We know that ∆S∪{i}(M) > 0, and ∆S∪{i+1}(M) = ∆Ii+1(M) > 0 because it is
indexed by a pivot set. �

Next, we compute how the k × k minors of M ′ compare to those of M .

Proposition (Problem 22.5). Let I be a k-element subset of [n]. Then

∆I(M ′) =

{
∆I(M) i+ 1 /∈ I
∆I(M)− t∆I\{i+1}∪{i}(M) i+ 1 ∈ I

Proof. We obtain M ′ from M by subtracting t times column i from column i + 1. Thus, if
I does not contain i+ 1, nothing changes, and if it does, by linearity of the determinant we
subtract t times the minor with column i+ 1 replaced by column i. �

Now we verify the properties that we need from M ′. First, we show that it has the bounded
affine permutation we expect:

Proposition (Problem 22.6). The bounded affine permutation of M ′ is f ′.

Proof. Let f ′′ be the bounded affine permutation of M ′.
First, we note that Mi+1 6= 0 (since f(i + 1) 6= i + 1) and M ′

i+1 6= 0 (if it were, Mi and
Mi+1 would be linearly dependent, in which case f(i) = i + 1 and we return to a previous
case). Then

span(M ′
i ,M

′
i+1) = span(Mi,Mi+1)

In particular, for j 6= i and any index c, we have

span(M ′
j+1, . . . ,M

′
c) = span(Mj+1, . . . ,Mc).

because M ′
i+1 is the only column of M ′ which differs from its counterpart in M . It follows

that for j 6= i, i+ 1, f ′′(j) = f(j).6

Then we claim that there are only two possibilities for f ′′. The bijectivity of f ′′, together
with the bounds i + 1 < a < b < i + n + 1, implies that f ′′(i + 1) is either f(i) = a or
f(i+ 1) = b. Then the condition 1

n

∑n
i=1(f ′′(i)− i) = k implies, respectively, that f ′′(i) = b

(in which case f ′′ = f ′) or f ′′(i) = a (in which case f ′′ = f .)
If f ′′ = f , then the Grassmann necklaces of M ′ and M are the same. However, setting

I = Ii+1 = S ∪ {i+ 1} in the formula from Problem 22.5, the definition of t implies that

∆Ii+1(M ′) = ∆Ii+1(M)− t∆S∪{i}(M) = ∆S∪{i+1}(M)−∆S∪{i+1}(M) = 0

That is, we chose t to be the precise value which makes ∆Ii+1(M ′) vanish. In particular,
columns Ii+1 of M ′ are linearly dependent, so they cannot be pivot columns, and the Grass-
mann necklace of M ′ is different from that of M . Thus f ′′ = f ′. �

Next, we show that we haven’t subtracted too much from M ′′, and it is still totally
nonnegative:

Proposition (Problem 22.7). If i+ 1 /∈ I, then ∆I(M ′) ≥ 0.

Proof. In this case ∆I(M ′) = ∆I(M) ≥ 0. �

Proposition (Problem 22.8). If I = T t {i+ 1}, then ∆I(M ′) ≥ 0.

6At this point in class, the proof took a different direction, but in retrospect it’s unclear whether it works.



58

Proof. We showed on Homework 8 that, if S t {1} is the set of pivot columns of a k × n
matrix and T t {1} is another size-k set of linearly independent columns, then

∆S∪{n}(M)∆T∪{1}(M) ≥ ∆S∪{1}(M)∆T∪{n}(M)

If we replace M by the cyclic shift of M with column i + 1 coming first, S becomes the set
S from above, and we have

∆S∪{i}(M)∆T∪{i+1}(M) ≥ ∆S∪{i+1}(M)∆T∪{i}

Dividing both sides by ∆S∪{i} gives

∆T∪{i+1}(M) ≥ ∆S∪{i+1}(M)

∆S∪{i}(M)
∆T∪{i}(M) = t∆T∪{i}(M)

and so
∆I(M ′) = ∆T∪{i+1}(M)− t∆T∪{i}(M) ≥ 0

�

Once we know that M ′ is totally nonnegative, we can repeat this process until we reach a
permutation with a fixed point mod n, reduce n, find an appropriate planar bipartite graph
for that matrix by the induction hypothesis, and then build a planar bipartite graph for M ′

by adding a lollipop and bridges.
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