PROBLEM SET ONE: DUE FRIDAY, SEPTEMBER 11

Problem 1. This problem is meant to give you some practice using the Lindström-Gessel-Vienott lemma.

- (1) Consider the $n \times n$ matrix $X_{ij} = \binom{i+j}{i}$ $\binom{+j}{i}$ for $0 \le i, j \le n - 1$. Show that X is totally nonnegative.
- (2) Consider the $n \times n$ matrix $Y_{ij} = \begin{pmatrix} i \\ i \end{pmatrix}$ $j \choose j$ for $0 \le i, j \le n-1$. Show that Y is totally nonnegative.

Problem 2. Let X be a $p \times q$ matrix and Y a $q \times r$ matrix. Show that, if X and Y are totally nonnegative, then XY is a totally nonnegative.

Problem 3. This next problem features some lemmas about the symmetric group which we will want soon. Given a permutation σ of $\{1, 2, \ldots, n\}$, we set $\ell(\sigma) = \#\{(i, j) : 1 \le i < j \le n \text{ and } \sigma(i) > \sigma(j)\}\)$. For $1 \le i \le n - 1$, let s_i be the permutation with $s_i(i) = i + 1$, $s_i(i + 1) = i$ and $s_i(j) = j$ for $j \neq i$, $i + 1$.

- (1) Let σ be any permutation and let $1 \le i \le n 1$. Show that $\ell(s_i\sigma) = \ell(\sigma) \pm 1$ and $\ell(\sigma s_i) = \ell(\sigma) \pm 1$ for some choice of signs. (The two signs don't have to be the same.
- (2) Let σ be a permutation other than the identity. Show that there is some i with $\ell(\sigma s_i) = \ell(\sigma) 1$ and that there is some j with $\ell(s_i\sigma) = \ell(\sigma) - 1$.
- (3) Let σ be a permutation. A *word* for σ is a sequence j_1, j_2, \ldots, j_r such that $\sigma = s_{j_1} s_{j_2} \cdots s_{j_r}$; the length of this word is r. Show that there is a word for σ with length $\ell(\sigma)$, and that there are no words with any shorter length.

Problem 4. This next problem features some lemmas about ranks of submatrices which we will want soon. Let X be a $n \times n$ matrix. For $0 \le a, b \le n$, let $r_{ab}(X)$ be the rank of the $a \times b$ submatrix in the upper left of X. (If a or b is 0, then $r_{ab} = 0$.)

- (1) Show that $0 \le r_{(a+1)b}(X) r_{ab}(X) \le 1$ and $0 \le r_{a(b+1)}(X) r_{ab}(X) \le 1$.
- (2) Show that we cannot have $r_{ab}(X) + 1 = r_{(a+1)b}(X) = r_{a(b+1)}(X) = r_{(a+1)(b+1)}(X)$.
- (3) Show that there are precisely n! matrices r_{ab} with $r_{k0} = r_{0k} = 0$, $r_{kn} = r_{nk} = k$ and obeying the conditions of parts (1) and (2) .