PROBLEM SET FOUR: DUE FRIDAY, OCTOBER 9

Problem 1. Show the following equality of polynomials in *q*:

$$\sum_{q \in S_n} q^{\ell(w)} = (1+q)(1+q+q^2)(1+q+q^2+q^3)\cdots(1+q+q^2+\cdots+q^{n-1}).$$

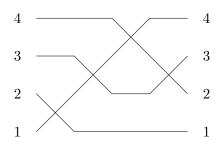
Problem 2. Consider the sequence of matrices:

$$\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & u & \\ & 1 & \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & u & uv \\ & 1 & v \\ & & 1 \end{bmatrix} \begin{bmatrix} 1 & u+w & uv \\ & 1 & v \\ & & 1 \end{bmatrix}$$

These are the partial products of our factorization $x_1(u)x_2(v)x_3(w)$.

Factor each of these matrices into the form $(N_-w \cap wN_+)B_-$ for the appropriate permutation w.

Problem 3. This problem introduces *wiring diagrams*, a graphical way to display words in S_n . Let $s_{i_1}s_{i_2}\cdots s_{i_r}$ be a word in S_n . A wiring diagram consists of n paths in \mathbb{R}^2 , starting at $\{(0, y) : 1 \le y \le n\}$ and ending at $\{(r, y) : 1 \le y \le n\}$. In the region between x = k and x = k + 1, the paths at height i_k and $i_k + 1$ cross and all the others continue straight across. For example, here is a wiring diagram for the word $s_1s_2s_3s_2$ in S_4 :



- (1) Which is the correct statement: The path starting at (0, y) ends at (0, w(y)), or the path starting at (0, y) ends at $(0, w^{-1}(y))$?
- (2) Show that a word $s_{i_1}s_{i_2}\cdots s_{i_r}$ is reduced if and only if there is no pair of paths that cross more than once.

Problem 4. This problem introduces the *strong order* (also called Bruhat order) on the symmetric group. Given a permutation matrix w, let $r_{ab}(w)$ be the rank of the upper left $a \times b$ submatrix of w. We define $u \le v$ in strong order iff $r_{ab}(u) \ge r_{ab}(v)$ for all (a, b).

- (1) Put a partial order on the set of k element subsets of [n] as follows: Let $I = \{i_1 < i_2 < \cdots < i_k\}$ and $J = \{j_1 < j_2 < \cdots < j_k\}$; we define $I \leq J$ iff $i_a \leq j_a$ for all a. Show that $u \leq v$ in strong order if and only if $u[k] \leq v[k]$ for $1 \leq k \leq n$.
- (2) Let $w \in S_n$. For any transposition $(a \ b)$ with a < b, show that $w(a \ b) \ge w$ if w(a) < w(b) and that $w(a \ b) \le w$ if $w(a) \ge w(b)$.
- (3) Let u < v. Show that there is a transposition (a b) for which $u < u(a b) \le v$. I am going to leave this one without a hint, because I am curious to see how you'll do it; it is a bit harder than I would ask without one.