PROBLEM SET FIVE: DUE FRIDAY, OCTOBER 23
Problem 1. Let M be a matrix. We define a top justified consecutive minor of M to be a minor of the form

Agi}i) (a+2)(atk) (M), for some a and k, and a left justified consecutive minor to be a minor of the form

Aggfllz(bﬂ)m(bJrk)(M) for some b and k. We’ll define a top-or-left justified minor to be a minor which is
either top or left justified (or both).
(1) Show that a totally positive matrix is determined by the values of its top-or-left justified minors.
Let X be an x n totally positive matrix. Let D be the diagonal matrix with entries
ABX) ABX)  AMm)(x)
AL(X) T ABX) Alx)

Let L be the unique lower triangular matrix such that
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b+1)(b42)---(b+k
A0 ) Al
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and let U be the unique upper triangular matrix such that

12k
Alg...k (U) _ A(a-&-l)(a—i—2)...(a—&-l<:) (X)
(a+1)(a+2)---(a+k) A%%Q(X)

(2) Show that X = LDU.

We have now confirmed the claim from earlier in the course that, if X is totally positive and has LDU
factorization (L, D, U), then L, D and U are totally nonnegative.

Problem 2. The Pliicker coordinates on the Grassmannian G (2,4) obey the relation A3A%4 = AZA34 1
A™A23, A point of G(2,4) is called totally nonnegative if all of its Pliicker coordinates are nonnegative.

(1) Which of the subsets of {12, 13, 14, 23,24, 34} are capable of being the sets {I : Al(z) # 0} for =
a totally nonnegative point of G(2,4)? You should find that there are 33 in total.
(2) Give examples of points of G(2,4) where each of the following occurs
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