PROBLEM SET SIX: DUE FRIDAY, OCTOBER 30

Problem 1. Cancelled, because the main claim was in error.

Problem 2. Let

where the 2×2 block is in rows and columns *i* and *i* + 1.

- (1) For $w \in S_n$, let $s_{i_1}s_{i_2}\cdots s_{i_N}$ be a reduced word for w. Define \dot{w} to be $\dot{s}_{i_1}\dot{s}_{i_2}\cdots \dot{s}_{i_N}$. Show that \dot{w} is independent of the choice of reduced word.
- (2) Show that each nonvanishing right justified minor of \dot{w} is 1.

In class, we showed that, for $g \in N_+ \cap B_- wB_-$, there is a unique $f \in N_- w \cap wN_+$ with $gB_- = fB_-$. The same argument shows that there is a unique $\dot{f} \in N_- \dot{w} \cap \dot{w}N_+$ with $gB_- = \dot{f}B_-$. (You don't have to check this.) This \dot{f} is slightly more useful than f, for the following reason:

(3) Suppose that g is totally nonnegative. Show that each right justified minor of \dot{f} is nonnegative.

Problem 3. What paper/area would you like to learn about for your final presentation?