Problem 1. We return to the topic of the strong order on S_n . Given a permutation matrix w, let $r_{ab}(w)$ be the rank of the upper left $a \times b$ submatrix of w. We define $u \leq v$ in strong order iff $r_{ab}(u) \geq r_{ab}(v)$ for all (a, b).

We showed before that, for any permutation w and any transposition $(i \ j)$, we have $w(i \ j) > w$ if w(i) < w(j) and $w(i \ j) < w$ if w(i) > w(j). We want to show that, if u < w, then there is a transposition $(i \ j)$ with $u < u(i \ j) < w$. Thus, any two elements of S_n are linked by a chain of transpositions in strong order. Let i be the least index for which $u(i) \neq w(i)$.

(1) Show that u(i) < w(i).

Let j be the least index for which $u(i) < u(j) \le w(i)$.

(2) Show that $u < u(i j) \le w$.

Problem 2. Show that $u \leq w$, in strong order, if and only if $B_{-}uB_{+} \cap B_{+}wB_{+}$ is nonempty.

The next problem uses the notion of a *Kasteleyn labelling*, which we will discuss in class. Here is the definition for those who want to start earlier: Let G be a bipartite planar graph embedded in the plane, and all of whose bounded faces are discs. A Kasteleyn labelling of G is an assignment of a nonzero complex number $\alpha(e)$ to each edge e of G with the following property: Consider any face of G, with edges e_1, e_2, \ldots, e_{2k} . Then we impose that

$$\alpha(e_1)\alpha(e_3)\alpha(e_5)\cdots\alpha(e_{2k-1}) = (-1)^{k-1}\alpha(e_2)\alpha(e_4)\alpha(e_6)\cdots\alpha(e_{2k}).$$

Problem 3. There is a cute geometric way to find Kasteleyn labellings. Embed G in the complex plane such that, for every bounded face F of G, the vertices of F lie on a circle. For an edge e with white endpoint w and black endpoint b, let $\alpha(e)$ be the unit complex number in direction w - b. Prove that this is a Kasteleyn labelling.