MATH 668 PROBLEM SET 3: DUE WEDNESDAY, SEPTEMBER 21

See the course website for homework policy.

Problem 1. Give the six 5×5 matrices which convert between the Schur polynomials s_{λ} of degree 4, and our other favorite bases m_{λ} , e_{λ} , h_{λ} . (Using technology is encouraged.)

Let λ be a partition and let n be a positive integer. Let $SSYT(\lambda, n)$ be the set of semistandard young Tableaux of shape λ with entries from $\{1, 2, ..., n\}$. In the next few problems, we will give other objects which are in bijection with $SSYT(\lambda, n)$.

Problem 2. List the eight elements of SSYT((2,1),3).

Problem 3. A Gelfand-Tsetlin pattern is an array of $\binom{n+1}{2}$ nonnegative integers $g_i j$, for $1 \le j \le i \le n$, obeying the inequalities

$$g_{ij} \ge g_{(i-1)j} \ge g_{i(j+1)}$$

We will display them in a triangular array:

- (1) List the eight Gelfand-Tsetlin patterns with $(g_{31}, g_{32}, g_{33}) = (2, 1, 0)$.
- (2) Give a bijection between $SSYT(\lambda, n)$ and $n \times n$ Gelfand-Tsetlin patterns with $g_{nj} = \lambda_j$.

Problem 4. Define a directed graph whose vertices are the integer lattice points (i, j), and where we have edges $(i, j) \rightarrow (i + 1, j)$ and $(i, j) \rightarrow (i, j + 1)$. A *directed path* is a path through this graph which follows the directions of the arrows. A *collection of vertex disjoint directed paths* is a collection of directed paths so that no two have any vertices in common.

(1) List the eight pairs of vertex disjoint paths γ_1 , γ_2 , where γ_1 goes from (1, -1) to (3, 1) and γ_2 goes from (1, -2) to (3, -1). In the diagram below, the starting locations are shown as white circles and the ending locations as black circles.

(2) Give a bijection between SSYT and *n*-tuples of vertex disjoint paths $(\gamma_1, \gamma_2, \ldots, \gamma_n)$ where γ_i connects (1, -i) to $(n, \lambda_i - i)$.

Problem 5. Let $\epsilon : S_n \to \{\pm 1\}$ be the map which sends a permutation to its sign. A polynomial $f(x_1, x_2, \ldots, x_n)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$ is called *alternating* if

$$f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}) = \epsilon(\sigma) f(x_1, x_2, \dots, x_n)$$

for all $\sigma \in S_n$. Put $\Delta := \prod_{1 \le i < j \le n} (x_i - x_j)$.

Show that a polynomial $f(x_1, x_2, \ldots, x_n)$ in $\mathbb{Z}[x_1, x_2, \ldots, x_n]$ is alternating if and only if $f(x_1, x_2, \ldots, x_n)$ is of the form $\Delta(x_1, x_2, \ldots, x_n)g(x_1, x_2, \ldots, x_n)$ for some symmetric polynomial g.