MATH 668 PROBLEM SET 4: DUE FRIDAY, OCTOBER 7 BECAUSE OF YOM KIPPUR

Problem 1. The goal of this problem is to give a representation theoretic meaning to the power sum symmetric functions. Let $V = \mathbb{C}^n$. Let $GL_n \times S_d$ act on $V^{\otimes d}$ by:

$$
(g,\sigma)\cdot (v_1\otimes v_2\otimes \cdots \otimes v_d)=(gv_{\sigma^{-1}(1)})\otimes (gv_{\sigma^{-1}(2)})\otimes \cdots \otimes (gv_{\sigma^{-1}(d)}).
$$

(The inverses are just to make this a left action, and aren't important for this problem.) Let σ be a permutation in S_d with cycle lengths $\lambda_1, \lambda_2, \ldots, \lambda_\ell$. Let g be a diagonalizable matrix with eigenvalues x_1, x_2, \ldots, x_n . Show that the trace of (g, σ) , for this action, is $p_\lambda(x_1, x_2, \ldots, x_n)$.

Problem 2. As on Problem Set 3, define $\alpha \to \beta$ to mean that β is obtained from α by adding a vertical strip.

(1) Prove the dual Pieri formula. I recommend using the ratio of alternants formula, but multiple proofs exist.

$$
e_k s_\lambda = \sum_{\substack{\lambda \to \mu \\|\mu| = |\lambda| + k}} s_\mu.
$$

(2) Prove the Pieri formula:

$$
h_k s_\lambda = \sum_{\substack{\lambda \uparrow \mu \\ |\mu| = |\lambda| + k}} s_\mu.
$$

Problem 3. Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ be a partition. We define a **special rim hook tableau** to be a labeling of the boxes of λ with the colors 1, 2, ..., ℓ such that

- (1) In each row and column, the numbers increase weakly from left to right and top to bottom.
- (2) The set of boxes of each color is either connected or empty, and contains no 2×2 boxes.
- (3) If the color k is used, then the lower-left-most box colored k is in column 1 and row k.

For example, here are the 6 special rim hook tableau of shape $(6, 5, 3)$:

And here are the 6 special rim hook tableau of shape $(2, 2, 2)$:

Let $c_i(T)$ be the number of j's in T, and let $h(T)$ be the number of places where T has two vertically stacked boxes with the same entry. Show that:

$$
s_{\lambda} = \sum_{T} (-1)^{h(T)} h_{c_1(T)} h_{c_2(T)} \cdots h_{c_{\ell}(T)}.
$$

Turn over for one more problem!

Problem 4. Let A be an $n \times n$ matrix of nonnegative integers. There are $\binom{2n-2}{n-1}$ $_{n-1}^{2n-2}$) paths through this matrix from A_{11} to A_{nn} where each step either moves from A_{ij} to $A_{i(j+1)}$ or from A_{ij} to $A_{(i+1)j}$. For example, the diagram below shows the 6 paths in the case $n = 3$:

$$
\begin{bmatrix}\nA_{11} \rightarrow A_{12} \rightarrow A_{13} \\
\downarrow \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}\n\end{bmatrix}\n\begin{bmatrix}\nA_{11} \rightarrow A_{12} & A_{13} \\
\downarrow \\
A_{21} & A_{22} \rightarrow A_{23} \\
A_{31} & A_{32} & A_{33}\n\end{bmatrix}\n\begin{bmatrix}\nA_{11} \rightarrow A_{12} & A_{13} \\
\downarrow \\
A_{21} & A_{22} \rightarrow A_{23} \\
A_{31} & A_{32} & A_{33}\n\end{bmatrix}\n\begin{bmatrix}\nA_{11} \rightarrow A_{12} & A_{13} \\
\downarrow \\
A_{21} & A_{22} & A_{23} \\
\downarrow \\
A_{31} & A_{32} & A_{33}\n\end{bmatrix}\n\begin{bmatrix}\nA_{11} & A_{12} & A_{13} \\
\downarrow \\
A_{21} \rightarrow A_{22} & A_{23} \\
\downarrow \\
A_{31} & A_{32} \rightarrow A_{33}\n\end{bmatrix}\n\begin{bmatrix}\nA_{11} & A_{12} & A_{13} \\
\downarrow \\
A_{21} & A_{22} & A_{23} \\
\downarrow \\
A_{31} \rightarrow A_{32} \rightarrow A_{33}\n\end{bmatrix}
$$

We define $L(A)$ to be the maximum of $\max_{\gamma} (\sum_{(i,j) \in \gamma} A_{ij})$ where the maximum runs over these $\binom{2n-2}{n-1}$ $\binom{2n-2}{n-1}$ paths. For example, in the $n=3$ case,

 $L(A) = \max(A_{11} + A_{12} + A_{13} + A_{23} + A_{33}, A_{11} + A_{12} + A_{22} + A_{33} + A_{33}, A_{11} + A_{12} + A_{22} + A_{32} + A_{33},$ $A_{11} + A_{21} + A_{22} + A_{23} + A_{33}$, $A_{11} + A_{21} + A_{22} + A_{32} + A_{33}$, $A_{11} + A_{21} + A_{31} + A_{32} + A_{33}$).

-
- (1) Use the RSK bijection to turn A into a pair (T, U) of SSYTs of shape λ . Show that $\lambda_1 = L(A).$
- (2) If A is a permutation matrix, meaning that there is a permutation w such that $A_{w(j)j} = 1$ and $A_{ij} = 0$ for all other (i, j) , what is the relation between $L(A)$ and the longest increasing subsequence of w ?