MATH 668 PROBLEM SET 8: DUE ?????

(1) Write down bases for $\bigwedge^2 \mathbb{C}^3$ and $\operatorname{Sym}^2 \mathbb{C}^2$. Problem 1.

- (2) Write down the matrix for the natural action of $g = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix}$ on $\bigwedge^2 \mathbb{C}^3$. (3) Write down the matrix for the natural action of $g = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{31} & g_{32} & g_{33} \end{bmatrix}$ on $\operatorname{Sym}^2 \mathbb{C}^2$.

Problem 2. This problem works through the main results about Schur-Weyl duality, which con-**Problem 2.** This problem works through the main researched in $T = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$ be the torus in the relationship between $\operatorname{GL}_n(\mathbb{C})$ and S_n representations. Let $T = \begin{bmatrix} t_1 \\ \vdots \\ t_n \end{bmatrix}$ be the torus in GL_n . If V is any algebraic representation of GL_n , then let $V_{1\dots 1}$ be the subspace on which T acts by the character $(1, 1, \ldots, 1)$. (This may be 0-dimensional.)

- (1) Show that $S_n \subset \operatorname{GL}_n$ maps V_1 to itself.
- (2) Let λ be a partition and let V_{λ} be the corresponding polynomial representation of V_{λ} . Show that $(V_{\lambda})_{1\dots 1}$ is nonzero if and only if $|\lambda| = n$. For λ a partition of n, define $W_{\lambda} = (V_{\lambda})_{1\dots 1}$.

Let R be the n^2 -dimensional polynomial ring $\mathbb{C}[x_{11}, x_{12}, \ldots, x_{nn}]$. I'll write $1 \dots 1 R_{1 \dots 1}$ for the subspace of R where T acts by character (1, 1, ..., 1) for both the left and right action of T, and I'll write $R_{1\dots 1}$ for the subspace where T acts by $(1, \dots, 1)$ from the right.

- (3) Show that $_{1\dots 1}R_{1\dots 1}\cong \mathbb{C}S_n$ as an $S_n\times S_n$ representation. Show that $R_{1\dots 1}\cong (\mathbb{C}^n)^{\otimes n}$ as a $GL_n \times S_n$ representation.
- (4) Show that $_{1\cdots 1}R_{1\cdots 1} \cong \bigoplus_{|\lambda|=n} W_{\lambda} \otimes W_{\lambda}^{\vee}$ as an $S_n \times S_n$ representation. Show that $R_{1\cdots 1} \cong$ $\bigoplus_{|\lambda|=n} V_{\lambda} \otimes W_{\lambda}^{\vee}$ as a $\operatorname{GL}_n \times S_n$ representation.
- (5) Using the identity $\mathbb{C}S_n \cong {}_{1\cdots 1}R_{1\cdots 1} \cong \bigoplus_{|\lambda|=n} W_{\lambda} \otimes W_{\lambda}^{\vee}$, show that the W_{λ} are a complete list of the irreducible representations of S_n .

Problem 3. This problem studies the Young symmetrizer. Let λ be a partition of n. Choose a numbering of the boxes of λ by [n]. Let $S_R \subset S_n$ be the subgroup which permutes the boxes within rows, so $S_R \cong \prod S_{\lambda_k}$; let S_C be the subgroup which permutes the boxes within columns, so $S_C \cong \prod S_{\lambda_L^T}$. We begin with some pure combinatorics:

(1) Let π be a permutation in S_n . Show that exactly one of the following is true: Either π factors as $\rho\sigma$ for $\rho \in S_R$ and $\sigma \in S_C$, or else there are two boxes *i* and *j* in the same column such that $\pi(i)$ and $\pi(j)$ are in the same row.

We define $\alpha_{\lambda} = \sum_{\sigma \in S_C} (-1)^{\sigma} \sigma$ and $\beta_{\lambda} = \sum_{\rho \in S_R} \rho$, as elements of the group algebra.

- (2) Show that, for any permutation $\pi \in S_n$, we either have $\beta_{\lambda}\pi\alpha_{\lambda} = \pm\beta_{\lambda}\alpha_{\lambda}$, or else $\beta_{\lambda}\pi\alpha_{\lambda} = 0$.
- (3) The Young symmetrizer is defined as $\omega_{\lambda} := \beta_{\lambda} \alpha_{\lambda}$. Show that ω_{λ}^2 is a scalar multiple of ω_{λ} .