PROBLEMS ON REPRESENTATION THEORY

Let G be a group and k a field. A **representation** of G is a k-vector space V and a group homomorphism $\rho: G \to \operatorname{GL}(V)$. In other words, a representation is an action of G on V by linear maps. We will often denote the representation as "V", and we will sometimes write ρ_V for ρ .

Given two representations (V_1, ρ_1) and (V_2, ρ_2) , the direct sum representation is the action of Gon $V_1 \oplus V_2$ where g acts by $\begin{bmatrix} \rho_1(g) & 0 \\ 0 & \rho_2(g) \end{bmatrix}$. A representation V is called *indecomposable* if $V \neq 0$ and we cannot write $V = V_1 \oplus V_2$ for $V_1, V_2 \neq 0$. It is easy to see that any finite dimensional representation is a direct sum of indecomposable representations.

Given a representation V, a *subrepresentation* of V is a vector subspace U of V such that G maps U to U. A representation V is called *simple* if $V \neq 0$ and the only subrepresentations of V are V and $\{0\}$.

Given two G-representations U and V, a morphism of G-representations is a linear map $\phi: U \to V$ obeying

$$\phi(g * u) = g * \phi(u)$$
 for $g \in G, u \in U$.

Problem 1. Let U and V be G-representations and let $\phi : U \to V$ be a morphism of G-representations. We write $\operatorname{Hom}_G(U, V)$ for the space of morphism of G-representations from U to V. Show that $\operatorname{Ker}(\phi)$ and $\operatorname{Im}(\phi)$ are subrepresentations of U and V respectively.

Our first goal is to prove:

Theorem (Maschke's Theorem, first version). Let k have characteristic zero and let G be a finite group. Then V is simple if and only if it is indecomposable.

Problem 2. Show that, if V is not indecomposable then V is not simple.

Problem 3. Let k have characteristic zero, let G be a finite group and let V be a finite dimensional nonzero representation of G. Suppose that V is not simple, so that $U \subset V$ is a nontrivial subrepresentation. Let $\eta: V \to U$ be a linear map with $\eta(u) = u$ for $u \in U$. Define

$$\pi(v) = \frac{1}{|G|} \sum_{g \in G} \left(\rho(g) \circ \eta \circ \rho(g)^{-1} \right)(v).$$

- (1) Show that π is a morphism of G-representations (even though η may not be).
- (2) Show that π has image U and that $\pi(u) = u$ for $u \in U$.
- (3) Show that $V = U \oplus \text{Ker}(\pi)$. Deduce that V is not indecomposable.

Thus we conclude:

Theorem (Maschke's Theorem, second version). Let k have characteristic zero, let G be a finite group and let V be a finite dimensional representation of G. Then V is a direct sum of simple representations.

We next will consider the question of whether the decomposition of V as a direct sum of simple representations is unique.

Problem 4 (Schur's Lemma, first version). Let U and V be simple representations of G and let $\phi: U \to V$ be a morphism of G-representations. Show that either $\phi = 0$ or else ϕ is an isomorphism.

Problem 5. Let U_1, U_2, \ldots, U_k be a collection of nonisomorphic simple G-representations and let $V = \bigoplus_{i=1}^{k} U_i^{\oplus c_i}$ for some nonnegative integers c_j .

- Show that dim_k Hom_G(U_j, V) = c_j dim_k Hom_G(U_j, U_j).
 Deduce that, if ⊕^k_{j=1} U^{⊕c_j}_j ≅ ⊕^k_{j=1} U^{⊕d_j}_j, then (c₁, c₂, ..., c_k) = (d₁, d₂, ..., d_k). (Nitpicker alert: Did you use that U_j ≠ 0?)

We thus deduce:

Theorem. Let G be a group and let V be a finite dimensional representation of G which can be written as $V = \bigoplus_{j=1}^{k} U_j^{\bigoplus c_j}$ for a collection of nonisomorphic simple representations U_1, U_2, \ldots, U_k of G. Then the U_j (up to isomorphism) and the multiplicities c_j are uniquely determined by V.

This theorem doesn't require that G is finite or that k has characteristic zero, but without those hypotheses, Maschke's theorem does not apply, so there may be many representations V which cannot be written in this way.

We now see how things are better if k is algebraically closed.

Problem 6. Let k be an algebraically closed field and let U be a simple G-representation. Let $\phi: U \to U$ be a morphism of G-representations. Show that ϕ is a scalar multiple of the identity. (Hint: Let λ be an eigenvalue of ϕ , and apply Problem 4 to the linear map $\phi - \lambda Id$.)

Problem 7. Let k be an algebraically closed field. Let U_1, U_2, \ldots, U_k be a collection of nonisomorphic simple G-representations and let $V = \bigoplus_{j=1}^{k} U_j^{\oplus c_j}$ for some nonnegative integers c_j . Show that $\dim_k \operatorname{Hom}_G(U_i, V) = c_i$.

We now introduce character theory into the story. Given a representation V, the *character* of V is the function $G \to k$ defined by

$$\chi_V(g) = \operatorname{Tr}(\rho_V(g)).$$

Problem 8. Suppose that g_1 and g_2 are conjugate elements of G, meaning that $g_2 = hg_1h^{-1}$ for some $h \in G$. For any character χ of G, show that $\chi(g_1) = \chi(g_2)$.

Problem 9. Check that $\chi_{V_1 \oplus V_2}(g) = \chi_{V_1}(g) + \chi_{V_2}(g)$.

Problem 10. Let k have characteristic zero, let G be a finite group, and let V be a finitedimensional representation of G. Let

$$V^G = \{ v \in V : g(v) = v \ \forall g \in G \}.$$

Define $\pi: V \to V$ by

$$\pi(v) = \frac{1}{|G|} \sum_{g \in G} g * v.$$

(1) Show that $\operatorname{Im}(\pi) = V^G$ and $V = V^G \oplus \operatorname{Ker}(\pi)$.

- (2) Show that $\operatorname{Tr}(\pi) = \dim V^G$.
- (3) Deduce that

$$\dim V^G = \frac{1}{|G|} \sum_{g \in G} \chi_V(g).$$

Problem 11. Let k have characteristic zero, let G be a finite group, and let U and V be finitedimensional representations of G. Let Hom(U, V) be the vector space of k-linear maps $U \to V$ (all maps, not just the morphisms of G-representations). Define an action of G on Hom(U, V) by

$$(g * \phi)(u) = \left(\rho_V(g) \circ \phi \circ \rho_U(g^{-1})\right)(u).$$

- (1) Show that $\operatorname{Hom}_G(U, V) = \operatorname{Hom}(U, V)^G$ for this G-action.
- (2) Show that

$$\dim_k \operatorname{Hom}_G(U, V) = \frac{1}{|G|} \sum_{g \in G} \chi_U(g^{-1}) \chi_V(g).$$

We can improve the formula above in the case that $k = \mathbb{C}$.

Problem 12. Let G be a finite group, and let V be a finite dimensional representation of G over the field \mathbb{C} . Let $g \in G$.

- (1) Show that all the eigenvalues of $\rho_V(g)$ are roots of unity.
- (2) Show that $\chi_V(g^{-1}) = \overline{\chi_V(g)}$, where \overline{z} is the complex conjugate of z.

Thus, let G be a finite group and let p and q be \mathbb{C} -valued functions on g. Define

$$\langle p,q \rangle := rac{1}{|G|} \sum_{g \in G} \overline{p(g)} q(g).$$

This is a positive definite Hermitian inner product. Then our results above specialize to say:

Theorem. With the above assumptions and notations, let U and V be two representations of G over \mathbb{C} . Then

$$\dim \operatorname{Hom}_G(U, V) = \langle \chi_U, \chi_V \rangle.$$

In particular, if U is a simple representation, then $\langle \chi_U, \chi_V \rangle$ is the multiplicity of the summand U in V.