
PROBLEMS ON REPRESENTATION THEORY

Let G be a group and k a field. A representation of G is a k-vector space V and a group
homomorphism ρ : G → GL(V ). In other words, a representation is an action of G on V by linear
maps. We will often denote the representation as “V ”, and we will sometimes write ρV for ρ.

Given two representations (V1, ρ1) and (V2, ρ2), the direct sum representation is the action of G

on V1 ⊕ V2 where g acts by
[
ρ1(g) 0
0 ρ2(g)

]
. A representation V is called indecomposable if V ̸= 0

and we cannot write V = V1 ⊕ V2 for V1, V2 ̸= 0. It is easy to see that any finite dimensional
representation is a direct sum of indecomposable representations.

Given a representation V , a subrepresentation of V is a vector subspace U of V such that G
maps U to U . A representation V is called simple if V ̸= 0 and the only subrepresentations of V
are V and {0}.

Given two G-representations U and V , a morphism of G-representations is a linear map
ϕ : U → V obeying

ϕ(g ∗ u) = g ∗ ϕ(u) for g ∈ G, u ∈ U.

Problem 1. Let U and V be G-representations and let ϕ : U → V be a morphism of G-
representations. We write HomG(U, V ) for the space of morphism of G-representations from U
to V . Show that Ker(ϕ) and Im(ϕ) are subrepresentations of U and V respectively.

Our first goal is to prove:

Theorem (Maschke’s Theorem, first version). Let k have characteristic zero and let G be a finite
group. Then V is simple if and only if it is indecomposable..

Problem 2. Show that, if V is not indecomposable then V is not simple.

Problem 3. Let k have characteristic zero, let G be a finite group and let V be a finite dimen-
sional nonzero representation of G. Suppose that V is not simple, so that U ⊂ V is a nontrivial
subrepresentation. Let η : V → U be a linear map with η(u) = u for u ∈ U . Define

π(v) = 1
|G|

∑
g∈G

(
ρ(g) ◦ η ◦ ρ(g)−1

)
(v).

(1) Show that π is a morphism of G-representations (even though η may not be).
(2) Show that π has image U and that π(u) = u for u ∈ U .
(3) Show that V = U ⊕Ker(π). Deduce that V is not indecomposable.

Thus we conclude:

Theorem (Maschke’s Theorem, second version). Let k have characteristic zero, let G be a finite
group and let V be a finite dimensional representation of G. Then V is a direct sum of simple
representations.



We next will consider the question of whether the decomposition of V as a direct sum of simple
representations is unique.

Problem 4 (Schur’s Lemma, first version). Let U and V be simple representations of G and let
ϕ : U → V be a morphism of G-representations. Show that either ϕ = 0 or else ϕ is an isomorphism.

Problem 5. Let U1, U2, . . . , Uk be a collection of nonisomorphic simple G-representations and let

V =
⊕k

j=1 U
⊕cj
j for some nonnegative integers cj .

(1) Show that dimk HomG(Uj , V ) = cj dimk HomG(Uj , Uj).

(2) Deduce that, if
⊕k

j=1 U
⊕cj
j

∼=
⊕k

j=1 U
⊕dj
j , then (c1, c2, . . . , ck) = (d1, d2, . . . , dk). (Nitpicker

alert: Did you use that Uj ̸= 0?)

We thus deduce:

Theorem. Let G be a group and let V be a finite dimensional representation of G which can be

written as V =
⊕k

j=1 U
⊕cj
j for a collection of nonisomorphic simple representations U1, U2, . . . , Uk

of G. Then the Uj (up to isomorphism) and the multiplicities cj are uniquely determined by V .

This theorem doesn’t require that G is finite or that k has characteristic zero, but without those
hypotheses, Maschke’s theorem does not apply, so there may be many representations V which
cannot be written in this way.

We now see how things are better if k is algebraically closed.

Problem 6. Let k be an algebraically closed field and let U be a simple G-representation. Let
ϕ : U → U be a morphism of G-representations. Show that ϕ is a scalar multiple of the identity.
(Hint: Let λ be an eigenvalue of ϕ, and apply Problem 4 to the linear map ϕ− λId.)

Problem 7. Let k be an algebraically closed field. Let U1, U2, . . . , Uk be a collection of noniso-

morphic simple G-representations and let V =
⊕k

j=1 U
⊕cj
j for some nonnegative integers cj . Show

that dimk HomG(Uj , V ) = cj .



We now introduce character theory into the story. Given a representation V , the character of
V is the function G → k defined by

χV (g) = Tr(ρV (g)).

Problem 8. Suppose that g1 and g2 are conjugate elements of G, meaning that g2 = hg1h
−1 for

some h ∈ G. For any character χ of G, show that χ(g1) = χ(g2).

Problem 9. Check that χV1⊕V2(g) = χV1(g) + χV2(g).

Problem 10. Let k have characteristic zero, let G be a finite group, and let V be a finite-
dimensional representation of G. Let

V G = {v ∈ V : g(v) = v ∀g ∈ G}.
Define π : V → V by

π(v) = 1
|G|

∑
g∈G

g ∗ v.

(1) Show that Im(π) = V G and V = V G ⊕Ker(π).
(2) Show that Tr(π) = dimV G.
(3) Deduce that

dimV G = 1
|G|

∑
g∈G

χV (g).

Problem 11. Let k have characteristic zero, let G be a finite group, and let U and V be finite-
dimensional representations of G. Let Hom(U, V ) be the vector space of k-linear maps U → V (all
maps, not just the morphisms of G-representations). Define an action of G on Hom(U, V ) by

(g ∗ ϕ)(u) =
(
ρV (g) ◦ ϕ ◦ ρU (g−1)

)
(u).

(1) Show that HomG(U, V ) = Hom(U, V )G for this G-action.
(2) Show that

dimk HomG(U, V ) = 1
|G|

∑
g∈G

χU (g
−1)χV (g).

We can improve the formula above in the case that k = C.

Problem 12. Let G be a finite group, and let V be a finite dimensional representation of G over
the field C. Let g ∈ G.

(1) Show that all the eigenvalues of ρV (g) are roots of unity.

(2) Show that χV (g
−1) = χV (g), where z is the complex conjugate of z.

Thus, let G be a finite group and let p and q be C-valued functions on g. Define

⟨p, q⟩ := 1
|G|

∑
g∈G

p(g)q(g).

This is a positive definite Hermitian inner product. Then our results above specialize to say:

Theorem. With the above assumptions and notations, let U and V be two representations of G
over C. Then

dimHomG(U, V ) = ⟨χU , χV ⟩.
In particular, if U is a simple representation, then ⟨χU , χV ⟩ is the multiplicity of the summand U
in V .


