Curved Dimers

Raf Bocklandt

August 13, 2020

1/13

The Fukaya category of a closed surface

- Objects: closed curves on the surface,
- Morphisms: Linear combinations of intersection points,

____ 토 토 외숙은

- Monogons, digons, polygons
- Signs
- Self-intersections
- Convergence
- Huge

Different approaches to solve all these problems (Seidel, Abouzaid, Fukaya, etc).

An approach using dimers

The *gentle* A_{∞} -*algebra* of an arc collection is the path algebra of $Q_{\mathcal{A}}$ divided by the ideal generated by the face like paths.

$$\operatorname{Gtl}^{\pm}\mathcal{A} = rac{\mathbb{C}Q_{\mathcal{A}}}{\langle lpha eta | lpha eta \in P_{-}
angle}$$

We give the algebra a \mathbb{Z}_2 -grading using the rule below.

イロト イポト イヨト イ

An approach using dimers: The higher products

On Gt1[±] \mathcal{A} we put an A_∞ -structure defined by the rule that

$$\mu(\alpha\beta_1,\ldots,\beta_k)=\alpha$$
 and $\mu(\beta_1,\ldots,\beta_k\gamma)=(-1)^{\deg\gamma}\gamma$

if β_1, \ldots, β_l are the consecutive angles of an immersed polygon without internal marked pounts bounded by arcs.

An approach using dimers: The twisted completion

A twisted complex A over C[•] consists of a pair (M, δ) where $M = \bigoplus_i A_i[k_i]$ is a direct sum of shifted objects and δ is a degree 1 element in Hom(M, M). Additionally we assume that δ is strictly lower triangular satisfies the Maurer-Cartan equation:

$$\mu_1(\delta) + \mu_2(\delta,\delta) + \mu_3(\delta,\delta,\delta) + \cdots = 0.$$

Given a sequence of twisted complexes $(M_0, \delta_0), \dots, (M_k, \delta_k)$ we can introduce a twisted *k*-ary product by taking a sum over all possible ways to insert $\delta's$ between the entries

$$\tilde{\mu}_k(a_1,\cdots,a_k) = \sum_{m_0,\cdots,m_k \ge 0} \mu_{\bullet}(\underbrace{\delta_0,\cdots,\delta_0}_{m_0}, a_1,\cdots,a_k,\underbrace{\delta_k,\cdots,\delta_k}_{m_k}).$$
$$C^{\bullet} \subset \operatorname{Tw} C^{\bullet}$$

↓□▶ ↓ @ ▶ ↓ E ▶ ↓ E ▶ ↓ E

Strings and Bands

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − � Q Q Q

9/13

Deformation theory

- A deformation of an A_{∞} -algebra A, μ is a $k[[\hbar]]$ -linear \mathbb{Z}_2 -graded curved A_{∞} -structure μ_{\hbar} on $A[[\hbar]]$ that reduces to A, μ if we quotient out \hbar .
- Deformation theory of (A, μ) is described by its Hochschild cohomology.
- A deformed twisted complex is a pair

$$M = (\bigoplus_i A_i[j_i], \delta + \epsilon)$$

where $(\bigoplus_i A_i[j_i], \delta)$ is an ordinary twisted complex and $\epsilon \in \hbar \operatorname{End}(\bigoplus_i A_i[j_i])[[\hbar]]$. The curvature of M is $\mu(\delta + \epsilon) + \mu(\delta + \epsilon, \delta + \epsilon) + \dots$

• The deformed twisted complexes form a defomation of (a category equivalent to) the twisted complexes of *A*.

See also Lowen-Van den Berg (https://arxiv.org/abs/1505.03698), FOOO.

Theorem

The Hochschild cohomology of the gentle A_{∞} -algebra $\operatorname{Gtl}^{\pm}\mathcal{A}$ is equal to

•
$$\operatorname{HH}^{0}(\operatorname{Gt} 1^{\pm} \mathcal{A}) = \bigoplus_{m \in M} \mathbb{C}[\ell_{m}] \ell_{m} \partial_{m} \oplus \mathbb{C}^{n+2g-1}$$
,

•
$$\operatorname{HH}^{1}(\operatorname{Gtl}^{\pm}\mathcal{A}) = \frac{\mathbb{C}[\ell_{m}|m\in M]}{(\ell_{i}\ell_{j}|i\neq j,i,j\in M)}.$$

Proof.

Either via direct computation using Bardzel's bimodule resolution of $Gt1^{\pm}A$ or using mirror symmetry and matrix factorizations (Lin-Pomerleano/Wong).

Question

Can we describe the deformations explicitely? (Joint with Van de Kreeke)

イロト イポト イヨト イヨト

Curved gentle A_{∞} -algebras

For each deformation class of Gt1[±] \mathcal{A} we can find a nice curved A_{∞} -algebra deformation of Gt1[±] \mathcal{A} (over $k[\hbar]$ instead of $k[[\hbar]]$). E.g. if $f = \sum_{i} \lambda_i \ell_i$ with $\lambda_i \in (\hbar)$ then we set

$$\mu_0(a) = \lambda_{m_1}\ell_{m_1} + \lambda_{m_2}\ell_{m_2} \text{ if } \underline{m_1} \underbrace{\qquad} \underline{m_2}$$

and if β_1, \ldots, β_l are the consecutive angles of an immersed polygon with internal marked points bounded by arcs.

we set

$$\mu(\alpha\beta_1,\ldots,\beta_k) = \lambda_1\lambda_2\lambda_3\alpha \text{ and } \mu(\beta_1,\ldots,\beta_k\gamma) = (-1)^{\deg\gamma}\lambda_1\lambda_2\lambda_3\gamma.$$

Deforming strings and bands

- After deforming the gentle algebra, every string and band becomes curved.
- Band objects that do not enclose a disk are isomorphic to an uncurved object.
- In general we cannot keep \hbar inside $k[\hbar]$ if we go to the twisted completion.
- Solution: look at a fixed number of band objects depending on the dimer.
- Behaviour depends on the genus of the surface and dimer.