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We will talk about regions on the triangular lattice and the number of their lozenge
tilings



We will talk about regions on the triangular lattice and the number of their lozenge
tilings

H1,2,1 and its three lozenge tilings

M(H1,2,1) = 3



The hexagon H3,5,4



The hexagon H3,5,4

H(3) H(4) H(5) H(3 + 4 + 5)

H(3 + 4) H(3 + 5) H(4 + 5)
= 116424 tilings

(H(n) := 0! 1! · · · (n− 1)!)



How many tilings?



1000000



Think of very large regions with a few holes near the “center”

We would like to understand how the number of tilings changes as the holes move
around the center



3 numbers: This, center shifted SE, center shifted NW — relative changes?



If the numbers are a0, a1 and a2, we have

a1 − a0
a0

= 0.1174023961...

a2 − a0
a0

= −0.1144518996...



If the numbers are a0, a1 and a2, we have

a1 − a0
a0

= 0.1174023961...
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= −0.1144518996...

Why nearly opposite?



If the numbers are a0, a1 and a2, we have

a1 − a0
a0

= 0.1174023961...

a2 − a0
a0

= −0.1144518996...

Why nearly opposite?

(These numbers have more than 3000 digits!)



The correlation ω

( )M

ω0 := lim
n→∞

n

)(M

Note: This only works when # ⊲−#⊳ = 0.



Extend to arbitrary unions of triangles of side 2

If # ⊲−#⊳ = 0, define ω := ω0.

If # ⊲−#⊳ = 2:

( )ω :=

1

c0
lim

R→∞
R2 ( )ω

R

where c0 =
√
3

2π



If # ⊲−#⊳ = 4:

( ) :=ω

1

c0
lim

R→∞
R4 ( )ω

R



Charge of a hole:

q(O) := #(⊲’s in O)−#(⊳’s in O)

(3,−2)4

2(2,3)

Translation of a hole:

• Base point: topmost and leftmost marked point in O

• O(x, y): the translation of O that brings its base point to the point (x, y)



• Consider x
(R)
1 , . . . , x

(R)
n , y

(R)
1 , . . . , y

(R)
n ∈ Z with

lim
R→∞

x
(R)
i

R
= xi, lim

R→∞

y
(R)
i

R
= yi

• Assume the (xi, yi)’s are distinct.

Theorem 1 (C., 2009) Suppose Oi is either of type ⊲k or of type ⊳k, with k

even, for i = 1, . . . , n. Then if O
(R)
i = Oi(x

(R)
i , y

(R)
i ),

ω(O
(R)
1 , . . . , O(R)

n ) ∼
n
∏

i=1

ω(Oi)
∏

1≤i<j≤n

d(O
(R)
i , O

(R)
j )

1
2 q(Oi) q(Oj), R → ∞,

and ω(⊲2s) =
3s

2/2

(2π)s
[0! 1! · · · (s− 1)!]2.



Conjecture 1 (C., 2008) Statement of theorem holds for any holes O1, . . . , On.



Conjecture 1 (C., 2008) Statement of theorem holds for any holes O1, . . . , On.

Dubédat (2015) proved case of 2n monomers on square lattice (for n = 1 this was
the Fisher-Stephenson (1963) conjecture)



Conjecture 1 (C., 2008) Statement of theorem holds for any holes O1, . . . , On.

Dubédat (2015) proved case of 2n monomers on square lattice (for n = 1 this was
the Fisher-Stephenson (1963) conjecture)

Note: What about ω(⊲2s+1)?



n+a+3b

n+a+3b n+a+3b

k

a
k

k

n

nn

b

b

b

M(Sn,a,b,k) :=
M(Sn,a,b,k)

M(Sn,a,b,0)
, Mr(Sn,a,b,k) :=

Mr(Sn,a,b,k)

Mr(Sn,a,b,0)

Conjecture 2 (C. and Fischer, 2019) For non-negative integers n, a, b and k
with a even we have

M(Sn,a,b,k)

Mr(Sn,a,b,k)3
=

[

k
∏

i=1

(a+ 6i− 4)(a+ 3b+ 6i− 2)

(a+ 6i− 2)(a+ 3b+ 6i− 4)

]2

.



This implies that, if the electrostatic hypothesis conjecture holds, we must have

ω(⊲k) =
3k

2/8

(2π)k/2

[

G

(

k

2
+ 1

)]2

, all k ≥ 0.

where G is the Barnes G-function.
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where G is the Barnes G-function.

The calculations use Lai and Rohatgi’s (2018) product formula for Mr(Sn,a,b,k).



This implies that, if the electrostatic hypothesis conjecture holds, we must have

ω(⊲k) =
3k

2/8

(2π)k/2

[

G

(

k

2
+ 1

)]2

, all k ≥ 0,

where G is the Barnes G-function.

The calculations use Lai and Rohatgi’s (2018) product formula for Mr(Sn,a,b,k).

Amusing note: The assumption that ω(⊲k) is given by the above formula for odd
k, together with the two conjectures above, imply that if A is the Glaisher-Kinkelin
constant, which is given by

lim
n→∞

0! 1! · · · (n− 1)!

n
n2

2 − 1
12 (2π)

n
2 e−

3n2

4

=
e

1
12

A
,

then

G

(

1

2

)

=
e1/821/24

A3/2π1/4
,

— which is in fact the correct value!



Another consequence: Squaring the hexagonal lattice

• Line up removed unit triangles and the removed unit squares as shown

• Both correlations decay to zero like c/
√
distance, with c = e1/22−5/6A−6



Recall:

• x
(R)
1 , . . . , x

(R)
n , y

(R)
1 , . . . , y

(R)
n ∈ Z, limR→∞

x
(R)
i

R
= xi, limR→∞

y
(R)
i

R
= yi

Theorem 1 (C., 2009) Suppose Oi is either of type ⊲k or of type ⊳k, with k

even, for i = 1, . . . , n. Then if O
(R)
i = Oi(x

(R)
i , y

(R)
i ),

ω(O
(R)
1 , . . . , O(R)

n ) ∼
n
∏

i=1

ω(Oi)
∏

1≤i<j≤n

d(O
(R)
i , O

(R)
j )

1
2 q(Oi) q(Oj), R → ∞,

and ω(⊲2s) =
3s

2/2

(2π)s
[0! 1! · · · (s− 1)!]2.



View this as a fine mesh limit

• Lattice spacing approaches zero

• Holes shrink to the points (x1, y1), . . . , (xn, yn)















Then Theorem 1 gives the effect of macroscopic gap displacements on the
correlation:

If arrange for O1 to shrink to point (x′
1, y

′
1) instead, then

ω(Q
(R)
1 , . . . , O

(R)
n )

ω(O
(R)
1 , . . . , O

(R)
n )

→
∏

j>1((xj − x′
1)

2 + (xj − x′
1)(yj − y′1) + (yj − y′1)

2)
1
4 q(O1) q(Oj)

∏

j>1((xj − x1)2 + (xj − x1)(yj − y1) + (yj − y1)2)
1
4 q(O1) q(Oj)

,

where Q
(R)
1 is the new R-th translate of O1.

(In our coordinate system, d((a, b), (c, d)) =
√

(a− b)2 + (a− b)(c− d) + (c− d)2.)



But what if we displace a gap just a fixed amount, say 1 unit?



But what is the change in correlation if we displace a gap just a fixed amount,
say 1 unit?

If we knew exactly the value of ω, we would know this.



But what is the change in correlation if we displace a gap just a fixed amount, say
1 unit?

If we knew exactly the value of ω, we would know this.

, )(W dc

a b,E )(



A simple case: Two E’s

ω(E(a, b), E(c, d)) =
3

4π2











(a− c)2 + (a− c)(b− d) + (b− d)2, 3|(a− b)− (c− d)

(a− c)2 + (a− c)(b− d) + (b− d)2 − 1, otherwise



Three E’s

If 3|a− b, c− d, e− f ,

ω(E(a, b), E(c, d), E(e, f)) =

(√
3

2π

)3

(t1 + t2 + t3),

t1 =
∏

{

(a− b)2 + (a− c)(b− d) + (b− d)2
}

t2 =

∣

∣

∣

∣

∣

∣

1 1 1
a e c
b d f

∣

∣

∣

∣

∣

∣

∑

{ad(a+ d)− bc(b+ c) + 2(ac− bd)(a− c+ b− d)}

t3 =

∣

∣

∣

∣

∣

∣

1 1 1
a e c
b d f

∣

∣

∣

∣

∣

∣

2



Three E’s

If 3|a− b, c− d, e− f ,

ω(E(a, b), E(c, d), E(e, f)) =

(√
3

2π

)3

(t1 + t2 + t3),

t1 =
∏

{

(a− b)2 + (a− c)(b− d) + (b− d)2
}

t2 =

∣

∣

∣

∣

∣

∣

1 1 1
a e c
b d f

∣

∣

∣

∣

∣

∣

∑

{ad(a+ d)− bc(b+ c) + 2(ac− bd)(a− c+ b− d)}

t3 =

∣

∣

∣

∣

∣

∣

1 1 1
a e c
b d f

∣

∣

∣

∣

∣

∣

2

So if the E’s are collinear, t2 = t3 = 0 — “exactness”!



• Exactness holds in fact for any number of collinear E(ai, bi)’s with 3|ai − bi.



• Exactness holds in fact for any number of collinear E(ai, bi)’s with 3|ai − bi.

• For 4 E’s exact value is very complicated, even when 3|ai − bi.



• Exactness holds in fact for any number of collinear E(ai, bi)’s with 3|ai − bi.

• For 4 E’s exact value is very complicated, even when 3|ai − bi.

• Even for 3 E’s, outside the case 3|ai − bi exact value is not nice — don’t even
have exactness for collinear holes!



Question. What is relative change in ω if we displace one hole microscopically?



Question. What is relative change in ω if we displace one hole microscopically?

Example: 2 E’s, 1 W

What is the R → ∞ asymptotics of

T
E(Ra0,Rb0)
α,β :=

ω(E(Ra0 + α,Rb0 + α), E(Ra,Rb),W (Rc,Rd))

ω(E(Ra0, Rb0), E(Ra,Rb),W (Rc,Rd))
− 1?



Determinant formula for the correlation ω

• P (x, y) :=
1

4π2

∫ 2π

0

∫ 2π

0

eixθeiyφdθ dφ

1 + e−iθ + e−iφ

• P (−3r − 1 + a,−1 + b) ∼
∞
∑

s=0

(3r)−s−1Us(a, b)

• A(x, y) :=

[

P (x− 1, y − 1) P (x− 2, y)
P (x, y − 2) P (x− 1, y − 1)

]

• Bs(x, y) :=

[

Us(x, y) Us(x− 1, y + 1)
Us(x+ 1, y − 1) Us(x, y)

]



Proposition. For m ≥ n,

ω(E(a1, b1), . . . , E(am, bm),W (c1, d1), . . . ,W (cn, dn))

is

(√
3

2π

)n−m

times the absolute value of the determinant of the matrix



































A(a1−c1,b1−d1) A(a1−c2,b1−d2) ··· A(a1−cn,b1−dn) B0(a1,b1) B1(a1,b1) ··· Bm−n−1(a1,b1)

A(a2−c1,b2−d1) A(a2−c2,b2−d2) ··· A(a2−cn,b2−dn) B0(a2,b2) B1(a2,b2) ··· Bm−n−1(a2,b2)

· · ··· · · · ··· ·

· · ··· · · · ··· ·

· · ··· · · · ··· ·

A(am−c1,bm−d1)A(am−c2,bm−d2) ···A(am−cn,bm−dn)B0(am,bm)B1(am,bm) ···Bm−n−1(am,bm)





































Lemma. Let ζ = e2πi/3, Df(x) = f(x+ 1)− f(x). Then

Us(a, b) = − i

2π

[

ζa−b−1(1−Dζ−1)−b − ζ−a+b+1(1−Dζ)−b
]

(xs)
∣

∣

x=a+b−1
.



Lemma. Let ζ = e2πi/3, Df(x) = f(x+ 1)− f(x). Then

Us(a, b) = − i

2π

[

ζa−b−1(1−Dζ−1)−b − ζ−a+b+1(1−Dζ)−b
]

(xs)
∣

∣

x=a+b−1
.

So for instance

U0(a, b) = − i

2π

(

ζa−b−1 − (1/ζ)a−b−1
)

= −
√
3

2π











1, a− b = 0 (mod 3)

0, a− b = 1 (mod 3)

−1, a− b = 2 (mod 3)

U1(a, b) = − i

2π

(

ζa−b−1(a+ b− 1 + b/ζ)− (1/ζ)a−b−1(a+ b− 1 + bζ)
)

= −
√
3

2π











a− 1, a− b = 0 (mod 3)

b, a− b = 1 (mod 3)

−a− b+ 1, a− b = 2 (mod 3)

U2(a, b) = −
√
3

2π











a2 − b2 − 2a− b+ 1, a− b = 0 (mod 3)

2ab+ b2 − 2b, a− b = 1 (mod 3)

−a2 − 2ab+ 2a+ 3b− 1, a− b = 2 (mod 3)



Then, assuming for simplicity 3|α− β, a0 − b0, a− b, c− d, we have:

ω(E(Ra0 + α,Rb0 + α), E(Ra,Rb),W (Rc,Rd)) =

(√
3

2π

)−1

×

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

det































P (−R(c−a0)−1+α,−R(d−b0)−1+β) P (−R(c−a0)−2+α,−R(d−b0)+β) 1 0

P (−R(c−a0)−2+α,−R(d−b0)+β) P (−R(c−a0)−1+α,−R(d−b0)−1+β) −1 1

P (−R(c−a)−1+α,−R(d−b)−1+β) P (−R(c−a)−2+α,−R(d−b)+β) 1 0

P (−R(c−a)−2+α,−R(d−b)+β) P (−R(c−a)−1+α,−R(d−b)−1+β) −1 1































∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

To compute what we want, we need the first two terms in the R → ∞ asymptotics
of P (−Ru− 1 + α,−Rv − 1 + β).



Using Laplace’s method for asymptotics of integrals, for 3|u− v we get:

P (−Ru− 1 + α,−Rv − 1 + β) = − i

2π

[

ζα−β

uζ − v/ζ
− ζβ−α

u/ζ − vζ

]

1

R

− i

2π

{

ζα−β

[

αζ − β/ζ

(uζ − v/ζ)2
− u/ζ + vζ

(uζ − v/ζ)3

]

− ζβ−α

[

α/ζ − βζ

(u/ζ − vζ)2
− uζ + v/ζ

(u/ζ − vζ)3

]}

1

R2

+O

(

1

R3

)

, R → ∞.

Know from Theorem 1 that

ω(E(Ra0, Rb0), E(Ra,Rb),W (Rc,Rd)) ∼ c
1

R2

Also

ω(E(Ra0 + α,Rb0 + α), E(Ra,Rb),W (Rc,Rd)) ∼ c
1

R2
,

because they shrink to same points in fine mesh limit.

So to determine the asymptotics of their difference, we need the subdominant
term in ω(E(Ra0, Rb0), E(Ra,Rb),W (Rc,Rd)) — term in 1

R3 . This is why we

need terms in 1/R2 in asymptotics of P .



Tα,β comes out to be

p(α, β, a0, b0, a, b, c, d)

[(a0 − a)2 + (a0 − a)(b0 − b) + (b0 − b)2][(a0 − c)2 + (a0 − c)(b0 − d) + (b0 − d)2]

1

R

+O(R−2),

where p(α, β, a0, b0, a, b, c, d) is an irreducible homogenous polynomial of degree 4
in the 8 variables, having 76 terms.



Tα,β comes out to be

p(α, β, a0, b0, a, b, c, d)

[(a0 − a)2 + (a0 − a)(b0 − b) + (b0 − b)2][(a0 − c)2 + (a0 − c)(b0 − d) + (b0 − d)2]

1

R

+O(R−2),

where p(α, β, a0, b0, a, b, c, d) is an irreducible homogenous polynomial of degree 4
in the 8 variables, having 76 terms.

Time to remember our physical analogies!



Superposition

Using the above approach one readily finds that

ω(E(Ra0 + α,Rb0 + β), E(a, b))

ω(E(Ra0, Rb0), E(a, b))
− 1 =

α(2(a0 − a) + b0 − b) + β(a0 − a+ 2(b0 − b))

(a0 − a)2 + (a0 − a)(b0 − b) + (b0 − b)2
1

R
+O(R−2)

and

ω(E(Ra0 + α,Rb0 + β),W (c, d))

ω(E(Ra0, Rb0),W (c, d))
− 1 =

α(2(a0 − c) + b0 − d) + β(a0 − c+ 2(b0 − d))

(a0 − c)2 + (a0 − c)(b0 − d) + (b0 − d)2
1

R
+O(R−2)

And indeed a Maple calculation readily confirms that the complicated expression
from before is just the sum of the two fractions above!



Same set-up as before:

• x
(R)
1 , . . . , x

(R)
n , y

(R)
1 , . . . , y

(R)
n ∈ Z, limR→∞

x
(R)
i

R
= xi, limR→∞

y
(R)
i

R
= yi

T
O

(R)
1

α,β (O
(R)
1 , . . . , O(R)

n ) :=
ω(O

(R)
1 + (α, β), . . . , O

(R)
n )

ω(O
(R)
1 , . . . , O

(R)
n )

− 1

Theorem 2 (C., 2020) Suppose Oi is either of type ⊲k or of type ⊳k, with k

even, for i = 1, . . . , n. Then if O
(R)
i = Oi(x

(R)
i , y

(R)
i ), for any integers α and β we

have

1

q(O1)

1
√

α2 + αβ + β2
T

O
(R)
1

α,β (O
(R)
1 , . . . , O(R)

n )

= proj(α,β)
1

2

n
∑

j=2

q(Oj)E(aj , bj ; a0, b0)
1

R
+O(1/R2), R → ∞.

E(a, b; c, d) :=
(c− a, d− b)

(c− a)2 + (c− a)(d− b) + (d− b)2
vector pointing from (a, b) to

(c, d) and having length
1

d((a, b), (c, d))
(d is the Euclidean distance)



So relative change under microscopic displacement is just projection of correspond-
ing electric field on displacement vector!



So relative change under microscopic displacement is just projection of correspond-
ing electric field on displacement vector!

This explains why the two relative changes we looked at early on were close to
being opposites.



So relative change under microscopic displacement is just projection of correspond-
ing electric field on displacement vector!

This explains why the two relative changes we looked at early on were close to
being opposites.

Long range — relative change is ∼ 1

R



• Statements holds more generally for “multiholes” like this



• Statement holds more generally for “multiholes” like this

• Conjecture: It holds when Oi’s are arbitrary unions of unit triangles.



There is another natural field we considered before: the field F of average dimer
orientations. Its scaling limit is also the electric field.

Main differences between F and the new field T

• Definition of T involves an infinitesimal, definition of F doesn’t

• The field F at a point arises simply by presence of holes in their places; for T
we need to create a hole where we want to measure it

• T captures in some sense “resistance” encountered as a hole is pushed through
the sea of dimers

• T and F are different in the presence of boundary (C. and Krattenthaler (2011))


