Expressive curves

Sergey Fomin

University of Michigan

arXiv:2006.14066 (with E. Shustin)

arXiv:1711.10598 (with P. Pylyavskyy, E. Shustin, D. Thurston)

Theorem

Let $g(x) \in \mathbb{R}[x]$ be a polynomial whose roots are real and distinct. Then g has exactly one critical point between each pair of consecutive roots, and no other critical points (even over \mathbb{C}).

Expressive curves

$$egin{aligned} G(x,y) \in \mathbb{R}[x,y] \subset \mathbb{C}[x,y] \ \mathcal{C} = \{(x,y) \in \mathbb{C}^2 \mid G(x,y) = 0\} \ \mathcal{C}_{\mathbb{R}} = \{(x,y) \in \mathbb{R}^2 \mid G(x,y) = 0\} \end{aligned}$$

polynomial with real coefficients affine plane algebraic curve set of real points of C

Definition

Polynomial G (resp., curve C) is called *expressive* if

- all critical points of G are real;
- at each critical point, G has a nondegenerate Hessian;
- each bounded connected component of ℝ² \ C_ℝ contains exactly one critical point of G;
- each unbounded component of $\mathbb{R}^2 \setminus C_{\mathbb{R}}$ contains no critical points;
- $C_{\mathbb{R}}$ is connected, and contains infinitely many points.

Expressive curves

$$egin{aligned} G(x,y) \in \mathbb{R}[x,y] \subset \mathbb{C}[x,y] \ C &= \{(x,y) \in \mathbb{C}^2 \mid G(x,y) = 0\} \ C_{\mathbb{R}} &= \{(x,y) \in \mathbb{R}^2 \mid G(x,y) = 0\} \end{aligned}$$

polynomial with real coefficients affine plane algebraic curve set of real points of C

Definition

Polynomial G (resp., curve C) is called *expressive* if

- all critical points of G are real;
- at each critical point, G has a nondegenerate Hessian;
- each bounded connected component of ℝ² \ C_ℝ contains exactly one critical point of G;
- each unbounded component of $\mathbb{R}^2 \setminus C_{\mathbb{R}}$ contains no critical points;
- $C_{\mathbb{R}}$ is connected, and contains infinitely many points.

Example of an expressive curve

Example of a non-expressive curve

Our main result is a complete classification of expressive curves (subject to a mild technical condition).

Why care?

Our main result is a complete classification of expressive curves (subject to a mild technical condition).

Why care?

Our main result is a complete classification of expressive curves (subject to a technical condition).

Why care?

Motivation #1: Extending the theory of hyperplane arrangements

From plane curves to cluster theory

Motivation #2: Understanding the geometry and topology of plane curves using combinatorics of quiver mutations and plabic graphs

A nodal curve in the real affine plane defines a *divide*.

There is a local version of this construction, involving morsifications.

A nodal curve in the real affine plane defines a *divide*.

There is a local version of this construction, involving morsifications.

$\mathsf{Divide} \to \mathsf{plabic} \mathsf{ graph}$

Plabic (planar bicolored) graphs were introduced by A. Postnikov to study parametrizations of cells in totally nonnegative Grassmannians. All our plabic graphs are *trivalent-univalent*.

Any divide gives rise to a plabic graph:

$\mathsf{Divide} \to \mathsf{plabic} \mathsf{ graph}$

Plabic (planar bicolored) graphs were introduced by A. Postnikov to study parametrizations of cells in totally nonnegative Grassmannians. All our plabic graphs are *trivalent-univalent*.

Any divide gives rise to a plabic graph:

$\mathsf{Divide} \to \mathsf{plabic} \mathsf{ graph}$

Plabic (planar bicolored) graphs were introduced by A. Postnikov to study parametrizations of cells in totally nonnegative Grassmannians. All our plabic graphs are *trivalent-univalent*.

Any divide gives rise to a plabic graph:

Move equivalence of plabic graphs

Two plabic graphs are called *move equivalent* if they can be obtained from each other via repeated application of the following moves:

$\mathsf{Plabic \ graph} \to \mathsf{quiver}$

Any plabic graph defines a quiver:

Square moves on plabic graphs translate into quiver mutations:

Flip moves do not change the quiver.

$\mathsf{Plabic \ graph} \to \mathsf{quiver}$

Any plabic graph defines a quiver:

Square moves on plabic graphs translate into quiver mutations:

Flip moves do not change the quiver.

Conjecture

Two plabic graphs coming from expressive curves are move equivalent if and only if their quivers are mutation equivalent.

Conjecture

Two plabic graphs coming from expressive curves are move equivalent if and only if their quivers are mutation equivalent.

There is a construction [T. Kawamura + FPST] that associates a canonical (transverse) link to any plabic graph.

Theorem (SF-P. Pylyavskyy-E. Shustin-D. Thurston) The link of a plabic graph is invariant under local moves.

Theorem (N. A'Campo + FPST)

The link of a divide arising from a real morsification of a plane curve singularity is isotopic to the link of the singularity.

There is a construction [T. Kawamura + FPST] that associates a canonical (transverse) link to any plabic graph.

Theorem (SF-P. Pylyavskyy-E. Shustin-D. Thurston)

The link of a plabic graph is invariant under local moves.

Theorem (N. A'Campo + FPST)

The link of a divide arising from a real morsification of a plane curve singularity is isotopic to the link of the singularity.

There is a construction [T. Kawamura + FPST] that associates a canonical (transverse) link to any plabic graph.

Theorem (SF-P. Pylyavskyy-E. Shustin-D. Thurston)

The link of a plabic graph is invariant under local moves.

Theorem (N. A'Campo + FPST)

The link of a divide arising from a real morsification of a plane curve singularity is isotopic to the link of the singularity.

There is a construction [T. Kawamura + FPST] that associates a canonical (transverse) link to any plabic graph.

Theorem (SF-P. Pylyavskyy-E. Shustin-D. Thurston)

The link of a plabic graph is invariant under local moves.

Theorem (N. A'Campo + FPST)

The link of a divide arising from a real morsification of a plane curve singularity is isotopic to the link of the singularity.

Mutation equivalence vs. link equivalence

Mutation equivalence vs. link equivalence

A real plane algebraic curve C is *expressive* if its defining polynomial has the smallest number of critical points allowed by the topology of the set of real points of C.

L^{∞} -regular curves

 $\begin{array}{ll} x,y,z & \text{projective coordinates in } \mathbb{P}^2 \\ L^\infty = \{z=0\} & \text{line at infinity} \\ \mathbb{C}^2 = \mathbb{P}^2 \backslash L^\infty & \text{affine complex plane} \end{array}$

Definition

A projective curve $C = Z(F) \subset \mathbb{P}^2$ is called L^{∞} -regular if

 $\forall p \in C \cap L^{\infty} \quad (Z(\frac{\partial F}{\partial x}) \cdot Z(\frac{\partial F}{\partial y}))_p = \mu(C, p) + (C \cdot L^{\infty})_p - 1.$

An affine curve $C \subset \mathbb{C}^2$ is called L^{∞} -*regular* if its projective closure $\widehat{C} \subset \mathbb{P}$ is L^{∞} -regular.

L^{∞} -regular curves

 $\begin{array}{ll} x,y,z & \mbox{projective coordinates in } \mathbb{P}^2 \\ L^\infty = \{z=0\} & \mbox{line at infinity} \\ \mathbb{C}^2 = \mathbb{P}^2 \backslash L^\infty & \mbox{affine complex plane} \end{array}$

Definition

A projective curve $C=Z(F)\subset \mathbb{P}^2$ is called L^∞ -regular if

$$\forall p \in C \cap L^{\infty} \quad (Z(\frac{\partial F}{\partial x}) \cdot Z(\frac{\partial F}{\partial y}))_p = \mu(C, p) + (C \cdot L^{\infty})_p - 1.$$

An affine curve $C \subset \mathbb{C}^2$ is called L^{∞} -regular if its projective closure $\widehat{C} \subset \mathbb{P}$ is L^{∞} -regular.

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *polynomial* if it admits a real polynomial parametrization $t \mapsto (P(t), Q(t))$.

Proposition

C is polynomial \Leftrightarrow C is a real rational curve with one place at infinity.

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *trigonometric* if $C_{\mathbb{R}}$ admits a real trigonometric parametrization $t \mapsto (P(\cos t, \sin t), Q(\cos t, \sin t))$.

Proposition

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *polynomial* if it admits a real polynomial parametrization $t \mapsto (P(t), Q(t))$.

Proposition

C is polynomial \Leftrightarrow C is a real rational curve with one place at infinity.

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *trigonometric* if $C_{\mathbb{R}}$ admits a real trigonometric parametrization $t \mapsto (P(\cos t, \sin t), Q(\cos t, \sin t))$.

Proposition

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *polynomial* if it admits a real polynomial parametrization $t \mapsto (P(t), Q(t))$.

Proposition

C is polynomial \Leftrightarrow C is a real rational curve with one place at infinity.

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *trigonometric* if $C_{\mathbb{R}}$ admits a real trigonometric parametrization $t \mapsto (P(\cos t, \sin t), Q(\cos t, \sin t))$.

Proposition

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *polynomial* if it admits a real polynomial parametrization $t \mapsto (P(t), Q(t))$.

Proposition

C is polynomial \Leftrightarrow C is a real rational curve with one place at infinity.

Definition

A real rational curve $C \subset \mathbb{C}^2$ is called *trigonometric* if $C_{\mathbb{R}}$ admits a real trigonometric parametrization $t \mapsto (P(\cos t, \sin t), Q(\cos t, \sin t))$.

Proposition

Theorem

Let $C \subset \mathbb{C}^2$ be a reduced real algebraic curve, with all irreducible components real. The following are equivalent:

- *C* is expressive and L^{∞} -regular;
- each component of C is either trigonometric or polynomial, all singular points of C in the affine plane are hyperbolic nodes, and the set of real points of C in the affine plane is connected.

In particular, any polynomial or trigonometric curve all of whose singular points (away from infinity) are real hyperbolic nodes is both expressive and L^{∞} -regular.

Theorem

Let $C \subset \mathbb{C}^2$ be a reduced real algebraic curve, with all irreducible components real. The following are equivalent:

- *C* is expressive and L^{∞} -regular;
- each component of *C* is either trigonometric or polynomial, all singular points of *C* in the affine plane are hyperbolic nodes, and the set of real points of *C* in the affine plane is connected.

In particular, any polynomial or trigonometric curve all of whose singular points (away from infinity) are real hyperbolic nodes is both expressive and L^{∞} -regular.

We describe many procedures for constructing new expressive curves from existing examples.

Example I: Line arrangements

A nodal connected real line arrangement is an expressive curve.

Example II: Arrangements of parabolas

Example III: Circle arrangements

Example IV: Arrangements of lines and circles

Example V: Arrangements of nodal cubics

Example VI: Lissajous-Chebyshev curves

Example VII: Hypotrochoids and epitrochoids

Proposition

A pseudoline arrangement comes from a morsification of an isolated plane curve singularity iff any two pseudolines in it intersect.

Proposition

A pseudoline arrangement comes from an expressive L^{∞} -regular curve (with all components real) iff it is stretchable.

Proposition

A pseudoline arrangement comes from a morsification of an isolated plane curve singularity iff any two pseudolines in it intersect.

Proposition

A pseudoline arrangement comes from an expressive L^{∞} -regular curve (with all components real) iff it is stretchable.

Proposition

A pseudoline arrangement comes from a morsification of an isolated plane curve singularity iff any two pseudolines in it intersect.

Proposition

A pseudoline arrangement comes from an expressive L^{∞} -regular curve (with all components real) iff it is stretchable.

Proposition

A pseudoline arrangement comes from a morsification of an isolated plane curve singularity iff any two pseudolines in it intersect.

Proposition

A pseudoline arrangement comes from an expressive L^{∞} -regular curve (with all components real) iff it is stretchable.