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Rolle’s Theorem

Theorem
Let g(x) ∈ R[x ] be a polynomial whose roots are real and distinct.
Then g has exactly one critical point between each pair of
consecutive roots, and no other critical points (even over C).
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Expressive curves

G (x , y) ∈ R[x , y ] ⊂ C[x , y ] polynomial with real coefficients
C = {(x , y) ∈ C2 | G (x , y) = 0} affine plane algebraic curve
CR ={(x , y) ∈ R2 | G (x , y) = 0} set of real points of C

Definition

Polynomial G (resp., curve C ) is called expressive if

• all critical points of G are real;

• at each critical point, G has a nondegenerate Hessian;

• each bounded connected component of R2\CR contains exactly
one critical point of G ;

• each unbounded component of R2\CR contains no critical points;

• CR is connected, and contains infinitely many points.
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Example of an expressive curve
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Example of a non-expressive curve
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Motivations

Our main result is a complete classification of expressive curves
(subject to a mild technical condition).

Why care?
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Motivations

Our main result is a complete classification of expressive curves
(subject to a technical condition).

Why care?

Motivation #1: Extending the theory of hyperplane arrangements
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From plane curves to cluster theory

Motivation #2: Understanding the geometry and topology of plane
curves using combinatorics of quiver mutations and plabic graphs
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Curve → divide

A nodal curve in the real affine plane defines a divide.

There is a local version of this construction, involving morsifications.
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Divide → plabic graph

Plabic (planar bicolored) graphs were introduced by A. Postnikov to
study parametrizations of cells in totally nonnegative Grassmannians.
All our plabic graphs are trivalent-univalent.

Any divide gives rise to a plabic graph:

−→

−→
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Move equivalence of plabic graphs

Two plabic graphs are called move equivalent if they can be obtained
from each other via repeated application of the following moves:

flip moves ←→

←→

square move ←→
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Plabic graph → quiver

Any plabic graph defines a quiver:

Square moves on plabic graphs translate into quiver mutations:

Flip moves do not change the quiver.
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Curve → divide → plabic graph → quiver

Conjecture
Two plabic graphs coming from expressive curves are move
equivalent if and only if their quivers are mutation equivalent.
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Curve → divide → plabic graph → link

There is a construction [T. Kawamura + FPST] that associates a
canonical (transverse) link to any plabic graph.

Theorem (SF-P. Pylyavskyy-E. Shustin-D. Thurston)

The link of a plabic graph is invariant under local moves.

Theorem (N. A’Campo + FPST)

The link of a divide arising from a real morsification of a plane curve
singularity is isotopic to the link of the singularity.

We conjecture that under mild technical assumptions, the link of a
divide arising from an expressive curve is isotopic to the curve’s link
at infinity.
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Mutation equivalence vs. link equivalence

curve germ

divide

Combinatorics Geometry

plabic graph

quiver link
move

equivalence

mutation transverse
equivalence isotopy??
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Back to expressive curves

A real plane algebraic curve C is expressive if its defining polynomial
has the smallest number of critical points allowed by the topology of
the set of real points of C .
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L∞-regular curves

x , y , z projective coordinates in P2

L∞ = {z = 0} line at infinity
C2 = P2\L∞ affine complex plane

Definition
A projective curve C = Z (F ) ⊂ P2 is called L∞-regular if

∀p ∈ C ∩ L∞ (Z (∂F
∂x

) · Z (∂F
∂y

))p = µ(C , p) + (C · L∞)p − 1.

An affine curve C ⊂ C2 is called L∞-regular if its projective closure
Ĉ ⊂ P is L∞-regular.
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Polynomial and trigonometric curves

Definition
A real rational curve C ⊂ C2 is called polynomial if it admits a real
polynomial parametrization t 7→ (P(t),Q(t)).

Proposition
C is polynomial⇔ C is a real rational curve with one place at infinity.

Definition
A real rational curve C⊂C2 is called trigonometric if CR admits a real
trigonometric parametrization t 7→ (P(cos t, sin t),Q(cos t, sin t)).

Proposition
C is trigonometric ⇔ C is a real rational curve with an infinite real
point set and with two complex conjugate places at infinity.
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Expressivity criterion

Theorem
Let C ⊂ C2 be a reduced real algebraic curve, with all irreducible
components real. The following are equivalent:

• C is expressive and L∞-regular;

• each component of C is either trigonometric or polynomial,
all singular points of C in the affine plane are hyperbolic nodes, and
the set of real points of C in the affine plane is connected.

In particular, any polynomial or trigonometric curve all of whose
singular points (away from infinity) are real hyperbolic nodes is both
expressive and L∞-regular.
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Constructing expressive curves

We describe many procedures for constructing new expressive curves
from existing examples.

4y2−3y−x=0 4(x2+y)2−3(x2+y)−x=0 4(x2+y2)2−3(x2+y2)−x=0
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Example I: Line arrangements

A nodal connected real line arrangement is an expressive curve.
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Example II: Arrangements of parabolas

Sergey Fomin (University of Michigan) Expressive curves August 4, 2020 22 / 28



Example III: Circle arrangements
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Example IV: Arrangements of lines and circles
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Example V: Arrangements of nodal cubics
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Example VI: Lissajous-Chebyshev curves
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Example VII: Hypotrochoids and epitrochoids
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Pseudoline arrangements

A pseudoline arrangement is a connected divide whose branches are
embedded intervals, and any two of them intersect at most once.

Proposition
A pseudoline arrangement comes from a morsification of an isolated
plane curve singularity iff any two pseudolines in it intersect.

Proposition
A pseudoline arrangement comes from an expressive L∞-regular curve
(with all components real) iff it is stretchable.

Thus there are divides which come from morsifications but not from
expressive curves, or vice versa.
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