Symmetries of stochastic colored vertex models

Pavel Galashin (UCLA)

Dimers in Combinatorics and Cluster Algebras 2020 arXiv:2003.06330

Stochastic colored six-vertex model

• Introduced in 2016:

[KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic *R* matrix for $U_q(A_n^{(1)})$. *Nuclear Phys. B*, 913:248–277, 2016. Introduced in 2016:
 [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic *R* matrix for U_q(A⁽¹⁾_n). *Nuclear Phys. B*, 913:248–277, 2016.

• Limiting cases include many other interesting probabilistic models

 Introduced in 2016:
 [KMMO16] A. Kuniba, V. V. Mangazeev, S. Maruyama, and M. Okado. Stochastic *R* matrix for U_q(A⁽¹⁾_n). *Nuclear Phys. B*, 913:248–277, 2016.

• Limiting cases include many other interesting probabilistic models

Stochastic colored six-vertex model

n lattice paths of colors 1, 2, ..., *n* move up/right on Z²

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- *n* lattice paths of colors 1, 2, ..., *n* move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- n lattice paths of colors 1, 2, ..., n move up/right on Z²
- When two paths of colors c₁ < c₂ enter a square from the bottom/left, they form either a crossing or an elbow

- *n* lattice paths of colors 1, 2, ..., *n* move up/right on Z²
- When two paths of colors c₁ < c₂ enter a square from the bottom/left, they form either a crossing or an elbow

- 0 < q < 1 is fixed
- spectral parameter p depends on the square

- *n* lattice paths of colors 1, 2, ..., *n* move up/right on Z²
- When two paths of colors $c_1 < c_2$ enter a square from the bottom/left, they form either a crossing or an elbow

- 0 < q < 1 is fixed
- $\bullet\,$ spectral parameter $\mathfrak p$ depends on the square

•
$$\mathfrak{p}_{i,j} = \frac{y_j - x_i}{y_j - qx_i}$$

- 2^{MN} pipe dreams $\longrightarrow n!$ permutations
- For each $\pi \in S_n$, let \mathbb{H}^{π} and \mathbb{V}^{π} record the endpoints of all "horizontal" and "vertical" pipes

- 2^{MN} pipe dreams $\longrightarrow n!$ permutations
- For each π ∈ S_n, let ℍ^π and V^π record the endpoints of all "horizontal" and "vertical" pipes

"vertical" pipes

 $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y}) =$ probability of observing

 $\pi \in S_n$ with $\mathbb{H}^{\pi} = \mathbb{H}$ and $\mathbb{V}^{\pi} = \mathbb{V}$.

• Given \mathbb{H}, \mathbb{V} , let

 $Q_{11} Q_{10} Q_9 Q_8$

V7

Flip theorem (G., 2020)

1		(25	Ç	04		
<i>y</i> 1	P_5	P	6	2	<i>_</i>	Q 3	
y 2	<i>P</i> ₄			2	\sim	Q_2	
<i>y</i> 3	<i>P</i> ₃				_	Q_1	
		P ₂		P	1		
		٢	<1	x	2		
$1-\mathfrak{p}_{1,1}$			$1-q\mathfrak{p}_{2,1}$				
1 -	₽1,1		1		9	₽2,1	
1 — p	1,2		1		- 1	P _{2,1}) _{2,2}	

1		G) ₅	G	04			
<i>y</i> 1	P_5	P	6			<i>Q</i> 3		
y 2	<i>P</i> ₄	P		2	_	Q_2		
<i>y</i> 3	<i>P</i> ₃	-				Q_1		
		F	2	F	1			
		x	1	x	2	<i>→</i>		
1 -	$1-\mathfrak{p}_{1,1}$			$\mathfrak{p}_{2,1}$				
1 -	$1 - \mathfrak{p}_{1,2}$			$1 - p_{2,2}$				
$\mathfrak{p}_{1,3}$			\$p_{2,3}					

1		G) ₅	G) ₄			
<i>y</i> 1	P_5	P	C			<i>Q</i> 3		
y 2	<i>P</i> ₄	P	6	2	_	Q_2		
<i>y</i> 3	<i>P</i> ₃	-				Q_1		
		F	2	F	1			
		x	1	x	2	<i>→</i>		
1 -	$1-\mathfrak{p}_{1,1}$			$\mathfrak{p}_{2,1}$				
1 -	$1 - \mathfrak{p}_{1,2}$			$1-\mathfrak{p}_{2,2}$				
p _{1,3}			p _{2,3}					

• All 4 probabilities are different!

- All 4 probabilities are different!
- ullet \Longrightarrow there is no weight-preserving bijection

1		G) ₅	G) ₄			
<i>y</i> 1	P_5	Р	6		F	Q_3		
y 2	<i>P</i> ₄	2		2	\sim	Q2		
<i>y</i> 3	<i>P</i> ₃					Q_1		
		F	2	F	1			
		x	1	x	2	<i>→</i>		
1 -	$1-\mathfrak{p}_{1,1}$			$\mathfrak{p}_{2,1}$				
1 -	$1 - \mathfrak{p}_{1,2}$			$1 - \mathfrak{p}_{2,2}$				
¥	$\mathfrak{p}_{1,3}$			\$p_{2,3}				

- All 4 probabilities are different!
- \implies there is no weight-preserving bijection
- $\bullet\,$ Sum of the first two = sum of the second two

- All 4 probabilities are different!
- ullet \Longrightarrow there is no weight-preserving bijection
- $\bullet\,$ Sum of the first two = sum of the second two

Corollary

The number of pipe dreams for $Z^{\mathbb{H},\mathbb{V}}$ equals the number of pipe dreams for $Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}$.

- All 4 probabilities are different!
- ullet \Longrightarrow there is no weight-preserving bijection
- Sum of the first two = sum of the second two

Corollary

The number of pipe dreams for $Z^{\mathbb{H},\mathbb{V}}$ equals the number of pipe dreams for $Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}$.

Problem

Find a bijective proof.

• Cut C

• Cut $C \mapsto$ random variable Ht(C; \mathbf{x}, \mathbf{y})

• Cut $C \mapsto$ random variable Ht(C; **x**, **y**)

• $Ht(C; \mathbf{x}, \mathbf{y})$ measures the number of pipes that "cross" C from left to right

- Cut $C \mapsto$ random variable $Ht(C; \mathbf{x}, \mathbf{y})$
- Ht(C; x, y) measures the number of pipes that "cross" C from left to right
 Fact: distribution of Ht(C; x, y) is a symmetric function in supp_H(C; x) := {x_l, x_{l+1},..., x_l} and supp_V(C; y) := {y_d, y_{d+1},..., y_u}

- Cut $C \mapsto$ random variable $Ht(C; \mathbf{x}, \mathbf{y})$
- Ht(C; x, y) measures the number of pipes that "cross" C from left to right
 Fact: distribution of Ht(C; x, y) is a symmetric function in

 $\operatorname{supp}_{H}(C; \mathbf{x}) := \{x_{\ell}, x_{\ell+1}, \dots, x_{r}\} \text{ and } \operatorname{supp}_{V}(C; \mathbf{y}) := \{y_{d}, y_{d+1}, \dots, y_{u}\}$

Theorem 2 (G., 2020)

Given any cuts C_1, \ldots, C_m and C'_1, \ldots, C'_m , we have

Given any cuts C_1, \ldots, C_m and C'_1, \ldots, C'_m , we have $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all i

Given any cuts C_1, \ldots, C_m and C'_1, \ldots, C'_m , we have $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all iif and only if

Given any cuts C_1, \ldots, C_m and C'_1, \ldots, C'_m , we have $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all iif and only if $\left(\operatorname{Ht}(C_1; \mathbf{x}, \mathbf{y}), \ldots, \operatorname{Ht}(C_m; \mathbf{x}, \mathbf{y})\right) \stackrel{d}{=} \left(\operatorname{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \ldots, \operatorname{Ht}(C'_m; \mathbf{x}', \mathbf{y}')\right).$

In other words, if a transformation preserves individual distributions of Ht(C_i; x, y)-s then it preserves their joint distribution.

Given any cuts
$$C_1, \ldots, C_m$$
 and C'_1, \ldots, C'_m , we have
 $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all i
if and only if
 $\left(\operatorname{Ht}(C_1; \mathbf{x}, \mathbf{y}), \ldots, \operatorname{Ht}(C_m; \mathbf{x}, \mathbf{y})\right) \stackrel{d}{=} \left(\operatorname{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \ldots, \operatorname{Ht}(C'_m; \mathbf{x}', \mathbf{y}')\right).$

- In other words, if a transformation preserves individual distributions of Ht(C_i; x, y)-s then it preserves their joint distribution.
- Unexpected behavior these random variables are far from independent!

Given any cuts
$$C_1, \ldots, C_m$$
 and C'_1, \ldots, C'_m , we have
 $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all i
if and only if
 $\left(\operatorname{Ht}(C_1; \mathbf{x}, \mathbf{y}), \ldots, \operatorname{Ht}(C_m; \mathbf{x}, \mathbf{y})\right) \stackrel{d}{=} \left(\operatorname{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \ldots, \operatorname{Ht}(C'_m; \mathbf{x}', \mathbf{y}')\right).$

Given any cuts C_1, \ldots, C_m and C'_1, \ldots, C'_m , we have $\operatorname{supp}_H(C_i; \mathbf{x}) = \operatorname{supp}_H(C'_i; \mathbf{x}')$ and $\operatorname{supp}_V(C_i; \mathbf{y}) = \operatorname{supp}_V(C'_i; \mathbf{y}')$ for all iif and only if $\left(\operatorname{Ht}(C_1; \mathbf{x}, \mathbf{y}), \ldots, \operatorname{Ht}(C_m; \mathbf{x}, \mathbf{y})\right) \stackrel{d}{=} \left(\operatorname{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \ldots, \operatorname{Ht}(C'_m; \mathbf{x}', \mathbf{y}')\right).$

 $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y})=Z^{\mathbf{180}^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},\mathsf{rev}(\mathbf{y}))$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C'_{i}; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C'_{i}; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \end{pmatrix} \\ \stackrel{d}{=} \begin{pmatrix} \mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \end{pmatrix}$$

$$Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y}) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},\operatorname{rev}(\mathbf{y}))$$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C_{i}'; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C_{i}'; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \end{pmatrix} \\ \stackrel{d}{=} \left(\mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \right)$$

• Theorem 2
$$\implies$$
 Theorem 1

 $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y}) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},\operatorname{rev}(\mathbf{y}))$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C'_{i}; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C'_{i}; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \end{pmatrix} \\ \stackrel{d}{=} \begin{pmatrix} \mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \end{pmatrix}$$

• Theorem 2 \implies Theorem 1

• Theorem 2 generalizes the results and confirms a conjecture of

[BGW19] Alexei Borodin, Vadim Gorin, and Michael Wheeler. Shift-invariance for vertex models and polymers. arXiv:1912.02957, 2019.

 $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y}) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},\operatorname{rev}(\mathbf{y}))$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C_{i}'; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C_{i}'; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \end{pmatrix} \\ \stackrel{d}{=} \begin{pmatrix} \mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \end{pmatrix}$$

• Theorem 2 \implies Theorem 1

• Theorem 2 generalizes the results and confirms a conjecture of

[BGW19] Alexei Borodin, Vadim Gorin, and Michael Wheeler. Shift-invariance for vertex models and polymers. arXiv:1912.02957, 2019.

• Shift of [BGW19] = double flip

 $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},\mathbf{y}) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},\operatorname{rev}(\mathbf{y}))$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C'_{i}; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C'_{i}; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \end{pmatrix} \\ \stackrel{d}{=} \begin{pmatrix} \mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \end{pmatrix}$$

• Theorem 2 \implies Theorem 1

• Theorem 2 generalizes the results and confirms a conjecture of

[BGW19] Alexei Borodin, Vadim Gorin, and Michael Wheeler. Shift-invariance for vertex models and polymers. arXiv:1912.02957, 2019.

- Shift of [BGW19] = double flip
- Proof of Theorem 1: Yang-Baxter relation combined with a Hecke algebra interpretation of the model
 [LLT97] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Flag varieties and the Yang-Baxter equation. Lett. Math. Phys., 40(1):75-90, 1997.

 $Z^{\mathbb{H},\mathbb{V}}(\mathsf{x},\mathsf{y}) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathsf{x},\mathsf{rev}(\mathsf{y}))$

Theorem 2

$$supp_{H}(C_{i}; \mathbf{x}) = supp_{H}(C'_{i}; \mathbf{x}')$$
$$supp_{V}(C_{i}; \mathbf{y}) = supp_{V}(C'_{i}; \mathbf{y}')$$

if and only if

$$\begin{pmatrix} \mathsf{Ht}(C_1; \mathbf{x}, \mathbf{y}), \dots, \mathsf{Ht}(C_m; \mathbf{x}, \mathbf{y}) \\ \stackrel{d}{=} \begin{pmatrix} \mathsf{Ht}(C'_1; \mathbf{x}', \mathbf{y}'), \dots, \mathsf{Ht}(C'_m; \mathbf{x}', \mathbf{y}') \end{pmatrix}$$

• Theorem 2 \Longrightarrow Theorem 1

• Theorem 2 generalizes the results and confirms a conjecture of

[BGW19] Alexei Borodin, Vadim Gorin, and Michael Wheeler. Shift-invariance for vertex models and polymers. arXiv:1912.02957, 2019.

- Shift of [BGW19] = double flip
- Proof of Theorem 1: Yang-Baxter relation combined with a Hecke algebra interpretation of the model
 [LLT97] Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. Flag varieties and the Yang-Baxter equation. Lett. Math. Phys., 40(1):75-90, 1997.
- Hecke algebra approach also gives a one-line proof of [BB19] Alexei Borodin and Alexey Bufetov. Color-position symmetry in interacting particle systems. arXiv:1905.04692.

$$\mathsf{Gr}(k,n) := \{ V \subseteq \mathbb{F}^n \mid \mathsf{dim}(V) = k \}$$

 $Gr(k, n) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \{full rank k \times n matrices\}/row operations.$

 $Gr(k, n) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \{full rank k \times n matrices\}/row operations.$

Gr(k, n) is stratified into positroid varieties. Here's the most interesting one:

 $Gr(k, n) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \{full rank k \times n matrices\}/row operations.$ Gr(k, n) is stratified into positroid varieties. Here's the most interesting one:

$$\Pi^{\circ}_{\boldsymbol{k},\boldsymbol{n}} := \{ X \in \operatorname{Gr}(\boldsymbol{k},\boldsymbol{n}) \mid \Delta_{1,\ldots,k}(X), \Delta_{2,\ldots,k+1}(X), \ldots, \Delta_{n,\ldots,k-1}(X) \neq 0 \},\$$

where $\Delta_I(X) =$ maximal minor of X with column set I.

 $Gr(k, n) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \{full rank k \times n matrices\}/row operations.$ Gr(k, n) is stratified into positroid varieties. Here's the most interesting one:

$$\Pi_{k,n}^{\circ} := \{X \in \mathsf{Gr}(k,n) \mid \Delta_{1,\ldots,k}(X), \Delta_{2,\ldots,k+1}(X), \ldots, \Delta_{n,\ldots,k-1}(X) \neq 0\},\$$

where $\Delta_I(X) =$ maximal minor of X with column set I.

Example

 $k = 2, \ n = 4:$ $\Pi_{k,n}^{\circ} \cong \left\{ \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix} \middle| a \neq 0, d \neq 0, ad - bc \neq 0 \right\}.$

 $Gr(k, n) := \{V \subseteq \mathbb{F}^n \mid dim(V) = k\} = \{full rank k \times n matrices\}/row operations.$ Gr(k, n) is stratified into positroid varieties. Here's the most interesting one:

$$\Pi_{k,n}^{\circ}:=\{X\in \mathsf{Gr}(k,n)\mid \Delta_{1,\ldots,k}(X),\Delta_{2,\ldots,k+1}(X),\ldots,\Delta_{n,\ldots,k-1}(X)\neq 0\},$$

where $\Delta_I(X) =$ maximal minor of X with column set I.

Example

$k = 2, \ n = 4:$ $\Pi_{k,n}^{\circ} \cong \left\{ \begin{pmatrix} 1 & 0 & a & b \\ 0 & 1 & c & d \end{pmatrix} \middle| a \neq 0, d \neq 0, ad - bc \neq 0 \right\}.$

Number of such matrices over \mathbb{F}_q :

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^2(q^2-(q-1)) = (q-1)^4 + q(q-1)^2.$$

$$\mathfrak{p}_{i,j}=1/q$$

Definition

Take a $k \times (n-k)$ rectangle and let

$$Z_{k,n}^{\text{id}}(\mathbf{x}, \mathbf{0}) :=$$
 the probability of observing id $\in S_n$ when $\mathbf{y} \to \mathbf{0}$.

Definition

Take a $k \times (n-k)$ rectangle and let

$$Z^{
m id}_{k,n}({f x},0):=$$
 the probability of observing id $\in S_n$ when ${f y} o 0.$

Example

k = 2, n = 4:

Probability:
$$(1-1/q)^4$$
 $1/q \cdot (1-1/q)^2$

Definition

Take a $k \times (n-k)$ rectangle and let

$$Z^{\mathsf{id}}_{k,n}(\mathbf{x},0):=\mathsf{the}$$
 probability of observing $\mathsf{id}\in \mathcal{S}_n$ when $\mathbf{y} o 0$

Example

k = 2, n = 4:

Probability:
$$(1-1/q)^4$$
 $1/q \cdot (1-1/q)^2$ $Z_{k,n}^{id}(\mathbf{x},0) = (1-1/q)^4 + 1/q \cdot (1-1/q)^2$

Coincidence?

Example

$$k = 2, n = 4$$
: $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^2(q^2 - (q-1)) = (q-1)^4 + q(q-1)^2.$

Coincidence?

Example

$$k=2, n=4: \quad \#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=(q-1)^2(q^2-(q-1))=(q-1)^4+q(q-1)^2.$$

Example

$$k = 2, n = 4$$
:
Probability: $(1 - 1/q)^4$ $1/q \cdot (1 - 1/q)^2$ $Z_{k,n}^{id}(\mathbf{x}, 0)$

$$Z^{
m id}_{k,n}({f x},0) = (1-1/q)^4 + 1/q \cdot (1-1/q)^2$$

Coincidence?

Example

$$k=2, n=4: \quad \#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=(q-1)^2(q^2-(q-1))=(q-1)^4+q(q-1)^2.$$

Example

$$k = 2, n = 4$$
:
Probability: $(1 - 1/q)^4$ $1/q \cdot (1 - 1/q)^2$

$$Z^{
m id}_{k,n}({f x},0) = (1-1/q)^4 + 1/q \cdot (1-1/q)^2$$

Proposition (G., 2020)

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=q^{k(n-k)}Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = q^{k(n-k)} Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = q^{k(n-k)} Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

Proof.

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=q^{k(n-k)}Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

Proof.

[Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. *Invent. Math.*, 79(3):499–511, 1985.

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=q^{k(n-k)}Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

Proof.

[Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. *Invent. Math.*, 79(3):499–511, 1985.

• $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)$ is a Kazhdan–Lusztig *R*-polynomial.

$$\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=q^{k(n-k)}Z_{k,n}^{\mathrm{id}}(\mathbf{x},0)$$

Proof.

[Deo85] Vinay V. Deodhar. On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells. *Invent. Math.*, 79(3):499–511, 1985.

- $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)$ is a Kazhdan–Lusztig *R*-polynomial.
- The whole story generalizes to arbitrary positroid varieties.

Theorem (G.–Lam, 2020+)

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = rac{1}{[n]_q} \left| \begin{matrix} n \\ k \end{matrix} \right|_q$

is the rational q-Catalan number.

Theorem (G.–Lam, 2020+)

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = \frac{1}{[n]_q} {n \brack k}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$
Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = \frac{1}{[n]_q} \begin{bmatrix} n \\ k \end{bmatrix}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$

• **Proof**: knot theory.

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q)=(q-1)^{n-1}\cdot \mathsf{Cat}_{k,n}(q), \quad \textit{where} \quad \mathsf{Cat}_{k,n}(q)=\frac{1}{[n]_q} \binom{n}{k}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$

- Proof: knot theory.
- For q = 1, the Catalan (n k = k + 1) and Fuss-Catalan $(n k = mk \pm 1)$ cases are due to David Speyer.

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = \frac{1}{[n]_q} \begin{bmatrix} n \\ k \end{bmatrix}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$

- Proof: knot theory.
- For q = 1, the Catalan (n k = k + 1) and Fuss-Catalan $(n k = mk \pm 1)$ cases are due to David Speyer.
- Forthcoming (G.–Lam, 2020+): a *q*, *t*-version.

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = \frac{1}{[n]_q} \begin{bmatrix} n \\ k \end{bmatrix}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$

- Proof: knot theory.
- For q = 1, the Catalan (n k = k + 1) and Fuss-Catalan $(n k = mk \pm 1)$ cases are due to David Speyer.
- Forthcoming (G.–Lam, 2020+): a q, t-version.

[LS16] Thomas Lam and David Speyer. Cohomology of cluster varieties. I. Locally acyclic case. arXiv:1604.06843.

Assume that gcd(k, n) = 1. Then

 $\#\Pi_{k,n}^{\circ}(\mathbb{F}_q) = (q-1)^{n-1} \cdot \operatorname{Cat}_{k,n}(q), \quad \textit{where} \quad \operatorname{Cat}_{k,n}(q) = \frac{1}{[n]_q} \begin{bmatrix} n \\ k \end{bmatrix}_q$

is the rational q-Catalan number.

Alternatively: the probability that a random point of $Gr(k, n; \mathbb{F}_q)$ belongs to $\prod_{k,n}^{\circ}(\mathbb{F}_q)$ is

$$rac{(q-1)^n}{q^n-1}.$$

- Proof: knot theory.
- For q = 1, the Catalan (n k = k + 1) and Fuss-Catalan $(n k = mk \pm 1)$ cases are due to David Speyer.
- Forthcoming (G.–Lam, 2020+): a q, t-version.

[LS16] Thomas Lam and David Speyer. Cohomology of cluster varieties. I. Locally acyclic case. arXiv:1604.06843.

[GL19] Pavel Galashin and Thomas Lam. Positroid varieties and cluster algebras. arXiv:1906.03501.

Stochastic colored 6-vertex model

• Flip theorem as $\mathbf{y} \to 0$: $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},0) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},0)$

• Flip theorem as $\mathbf{y} \to 0$: $Z^{\mathbb{H},\mathbb{V}}(\mathbf{x},0) = Z^{180^{\circ}(\mathbb{H}),\mathbb{V}}(\mathbf{x},0)$ – lifts to the Gr(k,n) level

Flip theorem as y → 0: Z^{H,V}(x, 0) = Z^{180°(H),V}(x, 0) - lifts to the Gr(k, n) level
Proof of flip theorem (Yang-Baxter and Hecke algebra)

Flip theorem as y → 0: Z^{H,V}(x, 0) = Z^{180°(H),V}(x, 0) - lifts to the Gr(k, n) level
Proof of flip theorem (Yang-Baxter and Hecke algebra) - also lifts to Gr(k, n):

Flip theorem as y → 0: Z^{H,V}(x, 0) = Z^{180°(H),V}(x, 0) - lifts to the Gr(k, n) level
Proof of flip theorem (Yang-Baxter and Hecke algebra) - also lifts to Gr(k, n): [MS16] Greg Muller and David E. Speyer. Cluster algebras of Grassmannians are locally acyclic. Proc. Amer. Math. Soc., 144(8):3267-3281, 2016.

Same recurrence

FIGURE 7. Building Postnikov diagrams for $s_i v$, $v s_i$ and $s_i v s_i$

[MS16] Greg Muller and David E. Speyer. Cluster algebras of Grassmannians are locally acyclic. Proc. Amer. Math. Soc., 144(8):3267–3281, 2016.

Same recurrence

[MS16] Greg Muller and David E. Speyer. Cluster algebras of Grassmannians are locally acyclic. Proc. Amer. Math. Soc., 144(8):3267–3281, 2016.

FIGURE 10. The induction step in the proof of Theorem 1.1: one can express $Z[\mathbb{H}, \mathbf{y}]$ recursively in terms of $Z[\mathbb{H}', \mathbf{y}]$ and $Z[\mathbb{H}'', \mathbf{y}]$.

[G., 2020]

• Find a common generalization of the 6-vertex model and positroid varieties.

- Find a common generalization of the 6-vertex model and positroid varieties.
- Clarify the relationship with (bumpless, etc) pipe dreams from Schubert calculus.

- Find a common generalization of the 6-vertex model and positroid varieties.
- Clarify the relationship with (bumpless, etc) pipe dreams from Schubert calculus.
- How is the flip theorem related to the geometric RSK?
 [Dau20] Duncan Dauvergne. Hidden invariance of last passage percolation and directed polymers. arXiv:2002.09459.

Thank you!

