Combinatorics of the Double-Dimer Model

Helen Jenne
University of Oregon
Dimers in Combinatorics and Cluster Algebras 2020
August 10, 2020

This talk is being recorded

Outline

(1) Kuo Condensation
(2) Main Result: Double-Dimer Condensation
(3) Ideas of Proof
(4) Non-tripartite pairings

Kuo condensation

- Today $G=\left(V_{1}, V_{2}, E\right)$ is a finite bipartite planar graph.
- Let $Z^{D}(G)$ denote the partition function.

$$
z^{D}(G)=x y z+x+z
$$

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Kuo Condensation

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$
Examples of non-bijective proofs:

- Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of Matchings
- Speyer, Variations on a theme of Kasteleyn, with Application to the TNN Grassmannian

Theorem (Desnanot-Jacobi identity/Dodgson condensation)

$$
\operatorname{det}(M) \operatorname{det}\left(M_{i, j}^{i, j}\right)=\operatorname{det}\left(M_{i}^{i}\right) \operatorname{det}\left(M_{j}^{j}\right)-\operatorname{det}\left(M_{i}^{j}\right) \operatorname{det}\left(M_{j}^{i}\right)
$$

M_{i}^{j} is the matrix M with the i th row and the j th column removed.

Applications of Kuo's work

- Tiling enumeration New proof of MacMahon's product formula for the generating function for plane partitions that are subsets of an $r \times s \times t$ box.
- Cluster algebras (LM17) Toric cluster variables for the quiver associated to the cone of the del Pezzo surface of degree 6

Main result. An analogue of Kuo's theorem for double-dimer configs.
Application: A problem in Donaldson-Thomas theory and Pandharipande-Thomas theory (joint work with Ben Young and Gautam Webb)

Double-dimer configurations

\mathbf{N} is a set of special vertices called nodes on the outer face of G.
Definition (Double-dimer configuration on ($G, \mathbf{N})$)

Configuration of

- ℓ disjoint loops
- Doubled edges
- Paths connecting nodes in pairs

Its weight is the product of its edge weights $\times 2^{\ell}$

Tripartite pairings

Definition (Tripartite pairing)

A planar pairing σ of \mathbf{N} is tripartite if the nodes can be divided into ≤ 3 sets of circularly consecutive nodes so that no node is paired with a node in the same set.

Tripartite

Not tripartite

We often color the nodes in the sets red, green, and blue, in which case σ has no monochromatic pairs.

Dividing nodes into three sets R, G, and B defines a tripartite pairing.

Main Result

$Z_{\sigma}^{D D}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ.

Theorem (J.)

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each $R G B$ color and x, y, w, v appear in cyclic order then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x, w}}^{D D}(G, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\})+Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})$

Example.

Main Result

$Z_{\sigma}^{D D}(G, \mathbf{N})$ denotes the weighted sum of all DD config with pairing σ.

Theorem (J.)

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each $R G B$ color and x, y, w, v appear in
cyclic order then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x, w}}^{D D}(G, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\})+Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})$

Example.

We only need the two nodes of the same RGB color to be opposite in BW color,

Corollaries

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then

$$
Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})
$$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are opposite in $B W$ color then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x, m}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})+$

$Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})$

Corollaries

Theorem (Kuo04, Theorem 5.1)

Let vertices a, b, c, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})+Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are opposite in $B W$ color then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x, m}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})+$

$Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})$

Corollaries

Theorem (Kuo04, Theorem 5.2)

an Let vertices a, c, b, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})-Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same $R G B$ color are the same in BW color then

$$
\begin{aligned}
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})= \\
& Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})- \\
& Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})
\end{aligned}
$$

Corollaries

Theorem (Kuo04, Theorem 5.2)

an Let vertices a, c, b, and d appear in a cyclic order on a face of G. If $a, c \in V_{1}$ and $b, d \in V_{2}$, then
$Z^{D}(G) Z^{D}(G-\{a, b, c, d\})=Z^{D}(G-\{a, d\}) Z^{D}(G-\{b, c\})-Z^{D}(G-\{a, b\}) Z^{D}(G-\{c, d\})$

Theorem (J.)

Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each RGB color and the two nodes of the same RGB color are the same in BW color then

$$
\begin{aligned}
& Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G-\{x, y, w, v\}, \mathbf{N}-\{x, y, w, v\})= \\
& Z_{\sigma_{x y}}^{D D}(G-\{x, y\}, \mathbf{N}-\{x, y\}) Z_{\sigma_{w}}^{D D}(G-\{w, v\}, \mathbf{N}-\{w, v\})- \\
& Z_{\sigma_{x v}}^{D D}(G-\{x, v\}, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G-\{w, y\}, \mathbf{N}-\{w, y\})
\end{aligned}
$$

Background: Double-dimer pairing probabilities

$$
\widehat{\operatorname{Pr}}\left(\begin{array}{l|l}
1 & 3 \\
2 & 5 \\
4 & 6
\end{array}\right)=X_{1,4} X_{2,5} X_{3,6}+X_{1,2} X_{3,4} X_{5,6}
$$

$$
\left.\begin{array}{rl}
\hat{\operatorname{Pr} r}\left(\begin{array}{l|l|l}
1 & 3 & 5 \\
8 & 4 & 2
\end{array}\right. & 6
\end{array}\right)=X_{1,8} X_{3,4} x_{5,2} x_{7,6}-X_{1,4} X_{3,8} X_{5,2} x_{7,6}+X_{1,6} X_{3,4} X_{5,8} X_{7,2},
$$

Definition (KW11a)

$X_{i, j}=\frac{Z^{D}\left(G_{i, j}^{B W}\right)}{Z^{D}\left(G^{B W}\right)}$, where $G^{B W} \subseteq G$ only contains nodes that are black and odd or white and even.

$G=G^{B W}$

G

$G^{B W}$

$G_{1,2}^{B W}$

$G_{2,4}^{B W}$

- $X_{i, j}=0$ if i and j have the same parity

$$
\begin{aligned}
& \widehat{\operatorname{Pr}}\left(\begin{array}{l|l|l}
1 & 3 & 5 \\
8 & 4 & 7 \\
\hline
\end{array}\right)=X_{1,8} X_{3,4} X_{5,2} X_{7,6}-X_{1,4} X_{3,8} X_{5,2} X_{7,6}+X_{1,6} X_{3,4} X_{5,8} X_{7,2} \\
& -X_{1,8} x_{3,6} x_{5,2} x_{7,4}-X_{1,4} x_{3,6} x_{5,8} x_{7,2}+X_{1,6} x_{3,8} x_{5,2} x_{7,4}
\end{aligned}
$$

- Each term in $\widehat{\operatorname{Pr}}(\sigma)$ is of the form

$$
X_{\tau}:=\prod_{(i, j) \in \tau} X_{i, j}, \text { where } \tau \text { is an odd-even pairing. }
$$

- Kenyon and Wilson made a simplifying assumption that all nodes are black and odd or white and even.

Theorem (KW11a, Theorem 1.3)

$\widehat{\operatorname{Pr}}(\sigma)$ is an integer-coeff homogeneous polynomial in the quantities $X_{i, j}$

Background: Determinant formula

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

$$
\widehat{\operatorname{Pr}} r(\sigma)=\operatorname{det}\left[1_{i, j} R G B \text {-colored differently } X_{i, j}\right]_{j=\sigma(1), \sigma(3), \ldots, \sigma(2 n-1)}^{i=1,3, \ldots, 2 n-1}
$$

$$
\widehat{\operatorname{Pr}}\left(\begin{array}{l|l}
1 & 3 \\
6 & 5 \\
2 & 4
\end{array}\right)=\left|\begin{array}{ccc}
X_{1,6} & 0 & X_{1,4} \\
X_{3,6} & X_{3,2} & 0 \\
0 & X_{5,2} & X_{5,4}
\end{array}\right|
$$

Since $\widehat{\operatorname{Pr}}(\sigma):=\frac{Z_{\sigma}^{D D}(G, \mathbf{N})}{\left(Z^{D}\left(G^{B W}\right)\right)^{2}}$, the idea of the proof is to combine K-W's matrix with the Desnanot-Jacobi identity:

$$
\operatorname{det}(M) \operatorname{det}\left(M_{i, j}^{i, j}\right)=\operatorname{det}\left(M_{i}^{i}\right) \operatorname{det}\left(M_{j}^{j}\right)-\operatorname{det}\left(M_{i}^{j}\right) \operatorname{det}\left(M_{j}^{i}\right)
$$

Example

$$
\begin{aligned}
& Z_{\sigma}^{D D}(\mathbf{N}) Z_{\sigma_{125}(}^{D D}(\mathbf{N}-1,2,5,8)=Z_{\sigma_{12}}^{D D}(\mathbf{N}-1,2) Z_{\sigma_{58}}^{D D}(\mathbf{N}-5,8)+Z_{\sigma_{18}}^{D D}(\mathbf{N}-1,8) Z_{\sigma_{25}}^{D D}(\mathbf{N}-2,5) \\
& 0 \\
& 0
\end{aligned}
$$

$\operatorname{det}(M) \operatorname{det}\left(M_{1,3}^{1,3}\right)=\operatorname{det}\left(M_{1}^{1}\right) \operatorname{det}\left(M_{3}^{3}\right)-\operatorname{det}\left(M_{1}^{3}\right) \operatorname{det}\left(M_{3}^{1}\right)$

$$
\operatorname{det}(M)=\frac{Z_{\sigma}^{D D}(\mathbf{N})}{\left(Z^{D}\left(G^{B W}\right)\right)^{2}}
$$

$$
\operatorname{det}\left(M_{3}^{3}\right) \stackrel{?}{=} \frac{Z_{\sigma_{2}}^{D D}(G, \mathbf{N}-\{2,5\})}{\left(Z^{D}\left(G^{B W}\right)\right)^{2}}, \text { where } M_{3}^{3}=\left(\begin{array}{ccc}
X_{1,8} & X_{1,4} & X_{1,6} \\
X_{3,8} & X_{3,4} & X_{3,6} \\
0 & X_{7,4} & X_{7,6}
\end{array}\right)
$$

- The nodes are not numbered consecutively.

$$
\operatorname{det}\left(M_{3}^{3}\right) \stackrel{?}{=} \frac{Z_{\sigma_{2}}^{D D}(G, \mathbf{N}-\{2,5\})}{\left(Z^{D}\left(G^{B W}\right)\right)^{2}}, \text { where } M_{3}^{3}=\left(\begin{array}{ccc}
X_{1,8} & X_{1,4} & X_{1,6} \\
X_{3,8} & X_{3,4} & X_{3,6} \\
0 & X_{7,4} & X_{7,6}
\end{array}\right)
$$

- Relabel the nodes.
- Node 2 is black and node 3 is white.
- Add edges of weight 1 to nodes 2 and 3 .
- Since $X_{i, j}=\frac{Z^{D}\left(G_{i, j}^{B W}\right)}{Z^{D}\left(G^{B W}\right)}$, the K-W matrix for this new graph will have different entries!

Observation. We need to lift the assumption that the nodes of the graph are black and odd or white and even.

Our Approach

- When the nodes are black and odd or white and even, $G=G^{B W}$, so

$$
X_{i, j}=\frac{Z^{D}\left(G_{i, j}^{B W}\right)}{Z^{D}\left(G^{B W}\right)}=\frac{Z^{D}\left(G_{i, j}\right)}{Z^{D}(G)}
$$

- Let $Y_{i, j}=\frac{Z^{D}\left(G_{i, j}\right)}{Z^{D}(G)}$ and let $\tilde{\operatorname{Pr}}(\sigma)=\frac{Z_{\sigma}^{D D}(G)}{\left(Z^{D}(G)\right)^{2}}$
- We establish analogues of K-W without their node coloring constraint.

$$
\widehat{\operatorname{Pr}}\left(\begin{array}{l|l|l}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)=X_{1,4} X_{2,5} X_{3,6}+X_{1,2} X_{3,4} X_{5,6}
$$

$$
\tilde{\operatorname{Pr}}\left(\begin{array}{l|l|l}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)=Y_{1,3} Y_{2,5} Y_{4,6}+Y_{1,5} Y_{2,6} Y_{4,3}
$$

- $X_{i, j}=0$ if i and j are the same parity
- $Y_{i, j}=0$ if i and j are the same color

$$
\operatorname{Pr}\left(\begin{array}{l|l|l}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right)=X_{1,4} X_{2,5} X_{3,6}+X_{1,2} X_{3,4} X_{5,6}
$$

- Each term in $\widehat{\operatorname{Pr}}(\sigma)$ is of the form

$$
X_{\tau}:=\prod_{(i, j) \in \tau} X_{i, j}, \text { where } \tau \text { is an odd-even pairing. }
$$

- Each term in $\widetilde{\operatorname{Pr}}(\sigma)$ is of the form

$$
Y_{\rho}:=\prod_{(i, j) \in \rho} Y_{i, j}, \text { where } \rho \text { is an black-white pairing. }
$$

A disaster of signs!

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ,

$$
\operatorname{sign}_{O E}(\rho) \prod_{(i, j) \in \rho}(-1)^{(|i-j|-1) / 2}=(-1)^{\# \text { crosses of } \rho} .
$$

We need a version of this for black-white pairings.
Example $\left(\operatorname{sign}_{O E}(\rho)\right)$
If $\rho=\left(\begin{array}{l|l}1 & 5 \\ 6 & 2\end{array} 4\right)$, then $\operatorname{sign}_{O E}(\rho)$ is the parity of $\left(\begin{array}{lll}\frac{6}{2} & \frac{2}{2} & \frac{4}{2}\end{array}\right)=\left(\begin{array}{lll}3 & 1 & 2\end{array}\right)$
How to define $\operatorname{sign}(\rho)$ if ρ is black-white?
Example

$$
\text { If } \rho=\left(\begin{array}{l|l|l}
1 & 2 & 3 \\
7 & 8 & 6 \\
\hline
\end{array}\right), \operatorname{sign}_{B W}(\rho) \text { is the sign of }\left(\begin{array}{llll}
3 & 4 & 1 & 2
\end{array}\right) \text {. }
$$

Lemma (KW11a, Lemma 3.4)

For odd-even pairings ρ,

$$
\operatorname{sign}_{O E}(\rho) \prod_{(i, j) \in \rho}(-1)^{(|i-j|-1) / 2}=(-1)^{\# \text { crosses of } \rho} .
$$

Definition

If (i, j) is a pair in a black-white pairing, let $\operatorname{sign}(i, j)=(-1)^{\left(|i-j|+a_{i, j}-1\right) / 2}$

$$
\begin{aligned}
& a_{7,3}=1, \text { so } \operatorname{sign}(7,3)=(-1)^{(|7-3|+1-1) / 2}=1 \\
& a_{8,3}=2, \text { so } \operatorname{sign}(8,3)=(-1)^{(|8-3|+2-1) / 2}=-1
\end{aligned}
$$

Lemma (J.)
If ρ is a black-white pairing,

$$
\operatorname{sign}_{c}(\mathbf{N}) \operatorname{sign}_{B W}(\rho) \prod_{(i, j) \in \rho} \operatorname{sign}(i, j)=(-1)^{\# \text { crosses of } \rho} .
$$

Determinant Formula

Theorem (KW09, Theorem 6.1)

When σ is a tripartite pairing,

$$
\begin{aligned}
\widehat{\operatorname{Pr}}(\sigma) & =\operatorname{det}\left[1_{i, j} \text { RGB-colored differently } X_{i, j}\right]_{j=\sigma(1), \sigma(3), \ldots, \sigma(2 n-1)}^{j=1,3, \ldots, 2 n-1} \\
& =\operatorname{sign}_{O E}(\sigma) \operatorname{det}\left[1_{i, j} R G B \text {-colored diff } X_{i, j}\right]_{j=2,4, \ldots, 2 n}^{j=1,3, \ldots, 2 n-1}
\end{aligned}
$$

Theorem (J.)
When σ is a tripartite pairing,

$$
\widetilde{\operatorname{Pr}}(\sigma)=\operatorname{sign}_{O E}(\sigma) \operatorname{det}\left[1_{i, j} R G B \text {-colored differently } Y_{i, j}\right]_{j=w_{1}, w_{2}, \ldots, w_{n}}^{i=b_{1}, b_{2}, \ldots, b_{n}} .
$$

More general result

Theorem (J.)

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. Then

$$
\begin{aligned}
& \operatorname{sign}_{O E}(\sigma) \operatorname{sign} \\
= & \left.\operatorname{sign}_{O E}\left(\sigma_{x y w v}^{\prime}\right) Z_{\sigma}^{\prime}\right) \operatorname{sign}_{O E}\left(\sigma_{w v}^{\prime}\right) Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w v}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\}) \\
& -\operatorname{sign}_{O E}\left(\sigma_{x v}^{\prime}\right) \operatorname{sign} n_{O E}\left(\sigma_{w y}^{\prime}\right) Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})
\end{aligned}
$$

Corollary

Divide \mathbf{N} into sets R, G, and B and let σ be the corr. tripartite pairing. Let $x, y, w, v \in \mathbf{N}$ such that $x<w \in V_{1}$ and $y<v \in V_{2}$. If $\{x, y, w, v\}$ contains at least one node of each $R G B$ color and x, y, w, v appear in cyclic order then
$Z_{\sigma}^{D D}(G, \mathbf{N}) Z_{\sigma_{x y w}}^{D D}(G, \mathbf{N}-\{x, y, w, v\})=$
$Z_{\sigma_{x y}}^{D D}(G, \mathbf{N}-\{x, y\}) Z_{\sigma_{w v}}^{D D}(G, \mathbf{N}-\{w, v\})+Z_{\sigma_{x v}}^{D D}(G, \mathbf{N}-\{x, v\}) Z_{\sigma_{w y}}^{D D}(G, \mathbf{N}-\{w, y\})$

Non-tripartite pairings

The proof of the condensation theorem required taking minors of

$$
M=\left[1_{i, j} \text { RGB-colored differently } Y_{i, j}\right]_{j=w_{1}, w_{2}, \ldots, w_{n}}^{i=b_{1}, b_{2}, \ldots, b_{n}}
$$

Example.

$$
\widetilde{\operatorname{Pr}}\left(\begin{array}{lll}
1 & 3 & 5 \\
6 & 2 & 4
\end{array}\right)=\left|\begin{array}{ccc}
0 & Y_{1,4} & Y_{1,6} \\
Y_{3,2} & 0 & Y_{3,6} \\
Y_{5,2} & Y_{5,4} & 0
\end{array}\right|=Y_{1,6} Y_{3,2} Y_{5,4}-Y_{1,4} Y_{3,6} Y_{5,2}
$$

$$
\operatorname{det}\left(M_{r_{1}}^{c_{4}}\right)=\left|\begin{array}{cc}
0 & Y_{3,6} \\
Y_{5,4} & 0
\end{array}\right|=\widetilde{\operatorname{Pr}}(35 \mid 62)
$$

$\operatorname{det}\left(M_{r_{1}}^{c_{4}}\right)$ is equal to the specialization of $\operatorname{Pr}\left(\begin{array}{l|l|l}1 & 3 & 5 \\ 6 & 2 & 4\end{array}\right)$ obtained by letting $Y_{1,4}=1$ and $Y_{1, j}=0$ for all $j \neq 4$.
What happens if we specialize polynomials associated to nontripartite pairings in this way?

Non-tripartite pairings

Example.

$$
\begin{aligned}
& \tilde{\operatorname{Pr}}(12|34| 56 \mid 78)=Y_{1,2} Y_{3,4} Y_{5,6} Y_{7,8}+Y_{1,2} Y_{3,6} Y_{5,8} Y_{7,4}+Y_{1,4} Y_{3,6} Y_{5,2} Y_{7,8} \\
& +Y_{1,4} Y_{3,8} Y_{5,6} Y_{7,2}+Y_{1,6} Y_{3,4} Y_{5,8} Y_{7,2}-2 Y_{1,4} Y_{3,6} Y_{5,8} Y_{7,2}+Y_{1,6} Y_{3,8} Y_{5,2} Y_{7,4}
\end{aligned}
$$

Let $Y_{7,2}=1$ and $Y_{7, j}=0$ for $j \neq 2$.

$$
\begin{aligned}
\widetilde{\operatorname{Pr}}_{7,2}(12|34| 56 \mid 78) & =Y_{1,4} Y_{3,8} Y_{5,6}+Y_{1,6} Y_{3,4} Y_{5,8}-2 Y_{1,4} Y_{3,6} Y_{5,8} \\
& =\widetilde{\operatorname{Pr}}(15|34| 68)+\widetilde{\operatorname{Pr}}(13|48| 56)
\end{aligned}
$$

Thank you for listening!

References

- Markus Fulmek, Graphical condensation, overlapping Pfaffians and superpositions of matchings. Electron. J. Comb., 17, 2010.
- Helen Jenne. Combinatorics of the double-dimer model. arXiv preprint arXiv:1911.04079, 2019.
- Richard W. Kenyon and David B. Wilson. Combinatorics of tripartite boundary connections for trees and dimers. Electron. J Comb., 16(1), 2009.
- Richard W. Kenyon and David B. Wilson. Boundary partitions in trees and dimers. Trans. Amer. Math. Soc., 363(3):1325-1364, 2011.
- Eric H. Kuo. Applications of graphical condensation for enumerating matchings and tilings. Theoret. Comput. Sci., 319(1-3):29-57, 2004.
- Tri Lai and Gregg Musiker. Beyond Aztec castles: toric cascades in the $d P_{3}$ quiver. Comm. Math. Phys., 356(3):823-881, 2017.
- David E. Speyer. Variations on a theme of Kasteleyn, with Application to the Totally Nonnegative Grassmannian. Electron. J. Comb., 23(2), 2016.

