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Outline

Plabic graphs and face labels [Postnikov, 2006, Scott, 2006].

Weakly separated collections, the Purity Conjecture
[Leclerc and Zelevinsky, 1998, Scott, 2006, Oh et al., 2015].

Symmetric plabic graphs, symmetric weakly separated collections.

The Symmetric Purity Conjecture.

Idea of the proof.
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Plabic graphs
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Class of “planar bicolored” networks, give coordinate charts on
Grassmannian [Postnikov, 2006].

Related to total positivity, cluster structures on Grassmannians
[Postnikov, 2006, Scott, 2006, Lam and Galashin, 2019].

Weighted paths [Postnikov, 2006], almost perfect matchings [Talaska,
2008, Postnikov et al., 2009, Lam, 2013], face labels [Scott, 2006,
Muller and Speyer, 2017].
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Trips in plabic graphs
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Turn right at each black vertex, left at each white vertex.

Label face with index i if it is to the left of the trip ending at
boundary vertex i .
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Face labels
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All faces labeled with sets of same size.

Graph gives coordinate chart on Gr(k ,m) where m is number of
boundary vertices, k is number of integers in face label.
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Plücker coordinates from plabic graphs
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Weights of faces give maximal minors of 2× 4 matrix.[
1 0 −b − c+bd

a
0 1 a d

]

∆12 = 1 ∆23 = b ∆34 = c ∆14 = d

∆13 = a ∆24 =
c + bd

a
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Coordinate charts from plabic graphs

Restricting to positive weights, get isomorphism to totally positive
Grassmannian Gr>0(k ,m) [Postnikov, 2006].

Minors indexed by plabic graph for Gr(k ,m) form clusters in cluster
algebra structure on the coordinate ring of Gr(k,m) [Scott, 2006].

These minors form a total positivity test for Gr(k , n).
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Weakly separated collections

Two k-element subsets of [m] are weakly separated if when the
integers 1, 2, . . . ,m are arranged in circle, there is a chord separating
I\J from J\I .
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Figure: I , J weakly separated.
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Figure: I , J not weakly separated.

A collection C of k-element subsets of [m] is a weakly separated
collection if I , J are weakly separated for any I , J ∈ C.
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The Purity Conjecture

Conjecture ([Scott, 2006])

A weakly separated collection C ⊆
([m]

k

)
is maximal by inclusion among all

such weakly separated collections if and only if |C| = m(m − k) + 1.

Related to earlier conjecture of [Leclerc and Zelevinsky, 1998].

Theorem ([Oh et al., 2015])

Let C ⊆
([m]

k

)
be a weakly separated collection. Then the following are

equivalent.

C is maximal by inclusion.

C is maximal by size, so |C| = m(m − k) + 1.

C is the set of face labels of a plabic graph for Gr(k ,m).
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Symmetric plabic graphs
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Reflection about vertical axis reverses colors of vertices.

Face and its mirror image have same weight.

[
1 0 −b − c+b2

a
0 1 a b

]
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From symmetric graphs to isotropic subspaces

Let 〈e1, . . . , e2n〉 be the standard basis of C2n. Define bilinear form

〈ei , ej〉 =

{
(−1)j if i + j = 2n + 1

0 otherwise

Symmetric plabic graphs correspond to matrices whose rows are
orthogonal with respect to this form.

Example: [
1 0 −b − c+b2

a
0 1 a b

]

1 · b − 0 · a + (−b) · 1−
(
−c + b2

a

)
· 0 = 0
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Coordinate charts on the Lagrangian Grassmannian.

The Lagrangian Grassmannian Λ(2n) is the subset Gr(n, 2n)
corresponding to maximal isotropic subspaces of with respect to 〈, 〉.

Theorem (K. 2019)

Face labels of symmetric plabic graphs give rational coordinates on Λ(2n).
Restricting to positive face weights gives an isomorphism to the totally
positive part of Λ(2n).
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Symmetric weakly separated collections

Fix a positive integer n. For i ∈ [2n], let i = 2n + 1− i .

For I ∈
([2n]

n

)
, define Ī = [2n]\{ī | i ∈ I}.

Example: n = 3, I = {2, 4, 5}

Ī = [6]\{5, 3, 2} = {1, 4, 6}

A weakly separated collection C is symmetric if Ī ∈ C for each I ∈ C.
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Main Theorem

Theorem (K., 2019)

Let C be a symmetric weakly separated collection in
([2n]

n

)
. Then the

following are equivalent.

1 |C| is maximal by size, so |C| = 2n2 + 1.

2 C is maximal by inclusion among all such symmetric weakly separated
collections.

3 C is the set of face labels of a symmetric plabic graph for Λ(2n).

The equivalence (1)⇔ (2) has been generalized to a larger family of
collections by [Danilov et al., 2019].
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Trips in symmetric plabic graphs
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Notice: face is to the left of trip ending at i iff reflection is to the
right of trip ending at i .

Label of face contains i iff label of reflection does not contain ī .

Face has label I , reflection has label Ī .
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Reflecting face labels

I has a full pair {i , ī} if i , ī ∈ I . Empty pairs are defined similarly.
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Figure: I has full pair at {1, 8}, empty pair at {3, 6}.

Get Ī from I by exchanging “full pairs” and “empty pairs.”

Karpman (Otterbein) Symmetric purity conjecture August 3, 2020 16 / 24



Admissible elements

I is admissible if I and Ī are weakly separated.

Every face label of a symmetric plabic graph is admissible.
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Figure: I , Ī weakly separated.
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Figure: I , Ī not weakly separated.

I is admissible if and only if I does not have a full pair between two
empty pairs, or an empty pair between two full pairs.
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Left, right and center elements
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Figure: A symmetric plabic graph.
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Figure: Some face labels.

Labels on the left have full pairs above empty pairs.

Labels on the right have empty pairs above full pairs.

Labels in the center have no full or empty pairs.
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Total positivity tests for Λ(2n)

Take maximal symmetric weakly separated collection, look at center
and left elements only.

These give rational coordinates on Λ(2n).

Total positivity test on Λ(2n), minimal by inclusion.

Question: are these cluster variables in a cluster structure?
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Proof sketch
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Start with symmetric weakly separated collection not maximal by size.

Build symmetric plabic graph which has all elements as face labels.
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Fill in the center
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Can always add face labels to build a “chain” along midline.

Example: start with 1234, successively replace elements to get 5678.
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Fill in the rest
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Once center “filled in”, any J weakly separated from current set of
face labels of guaranteed to be admissible.

Add {J, J̄}, repeat until collection maximal by size.
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K. Talaska. A formula for Plücker coordinates associated with a planar
network. International Mathematics Research Notices, 2008(9):
rnn081–rnn081, 2008.

Karpman (Otterbein) Symmetric purity conjecture August 3, 2020 24 / 24


