The Purity Conjecture for symmetric plabic graphs

Ray Karpman

Otterbein University

August 3, 2020

Outline

- Plabic graphs and face labels [Postnikov, 2006, Scott, 2006].
- Weakly separated collections, the Purity Conjecture [Leclerc and Zelevinsky, 1998, Scott, 2006, Oh et al., 2015].
- Symmetric plabic graphs, symmetric weakly separated collections.
- The Symmetric Purity Conjecture.
- Idea of the proof.

Plabic graphs

- Class of "planar bicolored" networks, give coordinate charts on Grassmannian [Postnikov, 2006].
- Related to total positivity, cluster structures on Grassmannians [Postnikov, 2006, Scott, 2006, Lam and Galashin, 2019].
- Weighted paths [Postnikov, 2006], almost perfect matchings [Talaska, 2008, Postnikov et al., 2009, Lam, 2013], face labels [Scott, 2006, Muller and Speyer, 2017].

Trips in plabic graphs

- Turn right at each black vertex, left at each white vertex.
- Label face with index i if it is to the left of the trip ending at boundary vertex i.

Face labels

- All faces labeled with sets of same size.
- Graph gives coordinate chart on $\operatorname{Gr}(k, m)$ where m is number of boundary vertices, k is number of integers in face label.

Plücker coordinates from plabic graphs

- Weights of faces give maximal minors of 2×4 matrix.

$$
\left[\begin{array}{cccc}
1 & 0 & -b & -\frac{c+b d}{a} \\
0 & 1 & a & d
\end{array}\right]
$$

$$
\begin{gathered}
\Delta_{12}=1 \quad \Delta_{23}=b \quad \Delta_{34}=c \quad \Delta_{14}=d \\
\Delta_{13}=a \quad \Delta_{24}=\frac{c+b d}{a}
\end{gathered}
$$

Coordinate charts from plabic graphs

- Restricting to positive weights, get isomorphism to totally positive Grassmannian $\operatorname{Gr}_{>0}(k, m)$ [Postnikov, 2006].
- Minors indexed by plabic graph for $\operatorname{Gr}(k, m)$ form clusters in cluster algebra structure on the coordinate ring of $\operatorname{Gr}(k, m)$ [Scott, 2006].
- These minors form a total positivity test for $\operatorname{Gr}(k, n)$.

Weakly separated collections

- Two k-element subsets of $[m]$ are weakly separated if when the integers $1,2, \ldots, m$ are arranged in circle, there is a chord separating $I \backslash J$ from $J \backslash I$.

Figure: I, J weakly separated.

Figure: I, J not weakly separated.

- A collection \mathcal{C} of k-element subsets of $[m]$ is a weakly separated collection if I, J are weakly separated for any $I, J \in \mathcal{C}$.

The Purity Conjecture

Conjecture ([Scott, 2006])
A weakly separated collection $\mathcal{C} \subseteq\binom{[m]}{k}$ is maximal by inclusion among all such weakly separated collections if and only if $|\mathcal{C}|=m(m-k)+1$.

- Related to earlier conjecture of [Leclerc and Zelevinsky, 1998].

Theorem ([Oh et al., 2015])
Let $\mathcal{C} \subseteq\binom{[m]}{k}$ be a weakly separated collection. Then the following are equivalent.

- \mathcal{C} is maximal by inclusion.
- \mathcal{C} is maximal by size, so $|\mathcal{C}|=m(m-k)+1$.
- \mathcal{C} is the set of face labels of a plabic graph for $\operatorname{Gr}(k, m)$.

Symmetric plabic graphs

- Reflection about vertical axis reverses colors of vertices.
- Face and its mirror image have same weight.

$$
\left[\begin{array}{cccc}
1 & 0 & -b & -\frac{c+b^{2}}{a} \\
0 & 1 & a & b
\end{array}\right]
$$

From symmetric graphs to isotropic subspaces

- Let $\left\langle e_{1}, \ldots, e_{2 n}\right\rangle$ be the standard basis of $\mathbb{C}^{2 n}$. Define bilinear form

$$
\left\langle e_{i}, e_{j}\right\rangle= \begin{cases}(-1)^{j} & \text { if } i+j=2 n+1 \\ 0 & \text { otherwise }\end{cases}
$$

- Symmetric plabic graphs correspond to matrices whose rows are orthogonal with respect to this form.
- Example:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & -b & -\frac{c+b^{2}}{a} \\
0 & 1 & a & b^{2}
\end{array}\right]} \\
1 \cdot b-0 \cdot a+(-b) \cdot 1-\left(-\frac{c+b^{2}}{a}\right) \cdot 0=0
\end{gathered}
$$

Coordinate charts on the Lagrangian Grassmannian.

- The Lagrangian Grassmannian $\Lambda(2 n)$ is the subset $\operatorname{Gr}(n, 2 n)$ corresponding to maximal isotropic subspaces of with respect to \langle,$\rangle .$

Theorem (K. 2019)
Face labels of symmetric plabic graphs give rational coordinates on $\Lambda(2 n)$. Restricting to positive face weights gives an isomorphism to the totally positive part of $\Lambda(2 n)$.

Symmetric weakly separated collections

- Fix a positive integer n. For $i \in[2 n]$, let $\bar{i}=2 n+1-i$.
- For $I \in\binom{[2 n]}{n}$, define $\bar{I}=[2 n] \backslash\{\bar{i} \mid i \in I\}$.
- Example: $n=3, I=\{2,4,5\}$
- $\bar{I}=[6] \backslash\{5,3,2\}=\{1,4,6\}$
- A weakly separated collection \mathcal{C} is symmetric if $\bar{I} \in \mathcal{C}$ for each $I \in \mathcal{C}$.

Main Theorem

Theorem (K., 2019)
Let \mathcal{C} be a symmetric weakly separated collection in $\binom{[2 n]}{n}$. Then the following are equivalent.
(1) $|\mathcal{C}|$ is maximal by size, so $|\mathcal{C}|=2 n^{2}+1$.
(2) \mathcal{C} is maximal by inclusion among all such symmetric weakly separated collections.
(3) \mathcal{C} is the set of face labels of a symmetric plabic graph for $\Lambda(2 n)$.

- The equivalence $(1) \Leftrightarrow(2)$ has been generalized to a larger family of collections by [Danilov et al., 2019].

Trips in symmetric plabic graphs

- Notice: face is to the left of trip ending at i iff reflection is to the right of trip ending at i.
- Label of face contains i iff label of reflection does not contain \bar{i}.
- Face has label I, reflection has label \bar{I}.

Reflecting face labels

- I has a full pair $\{i, \bar{i}\}$ if $i, \bar{i} \in I$. Empty pairs are defined similarly.

Figure: I has full pair at $\{1,8\}$, empty pair at $\{3,6\}$.

- Get \bar{l} from / by exchanging "full pairs" and "empty pairs."

Admissible elements

- I is admissible if I and \bar{I} are weakly separated.
- Every face label of a symmetric plabic graph is admissible.

Figure: I, \bar{I} not weakly separated.

- I is admissible if and only if I does not have a full pair between two empty pairs, or an empty pair between two full pairs.

Left, right and center elements

Figure: A symmetric plabic graph.

Figure: Some face labels.

- Labels on the left have full pairs above empty pairs.
- Labels on the right have empty pairs above full pairs.
- Labels in the center have no full or empty pairs.

Total positivity tests for $\Lambda(2 n)$

- Take maximal symmetric weakly separated collection, look at center and left elements only.
- These give rational coordinates on $\Lambda(2 n)$.
- Total positivity test on $\Lambda(2 n)$, minimal by inclusion.
- Question: are these cluster variables in a cluster structure?

Proof sketch

- Start with symmetric weakly separated collection not maximal by size.
- Build symmetric plabic graph which has all elements as face labels.

Fill in the center

- Can always add face labels to build a "chain" along midline.
- Example: start with 1234 , successively replace elements to get 5678 .

Fill in the rest

- Once center "filled in", any J weakly separated from current set of face labels of guaranteed to be admissible.
- Add $\{J, \bar{J}\}$, repeat until collection maximal by size.

References I

V. Danilov, A. Karzanov, and G. Koshevoy. The purity phenomenon for symmetric separated set-systems. Preprint, 2019. arXiv:2007.02011 [math.CO].
T. Lam. Notes on the totally nonnegative Grassmannian. Web, 112013. www.math.lsa.umich.edu/~tfylam/Math665a/positroidnotes. pdf. Accessed: 09-26-14.
T. Lam and P. Galashin. Positroid varieties and cluster algebras. Preprint, 2019. arXiv:1906.03501 [math.CO].
B. Leclerc and A. Zelevinsky. Quasicommuting families of quantum Plcker coordinates. In Advances in Math. Sciences (Kirillov's seminar), AMS Translations 181, pages 85-108, 1998.
G. Muller and D. E. Speyer. The twist for positroid varieties. Proceedings of the London Mathematical Society, 115(5):1014-1071, 2017. doi: 10.1112/plms. 12056.

References II

S. Oh, A. Postnikov, and D. Speyer. Weak separation and plabic graphs. Proceedings of the London Mathematical Society, 110(3):721-754, 02 2015. doi: 10.1112/plms/pdu052.
A. Postnikov. Total positivity, Grassmannians and networks. Preprint, 2006. arXiv:math/0609764 [math.CO].
A. Postnikov, D. Speyer, and L. Williams. Matching polytopes, toric geometry, and the totally non-negative Grassmannian. Journal of Algebraic Combinatorics, 30:173-191, 092009.
J. S. Scott. Grassmannians and cluster algebras. Proceedings of the London Mathematical Society, 92(2):345-380, 03 2006. doi: 10.1112/S0024611505015571.
K. Talaska. A formula for Plücker coordinates associated with a planar network. International Mathematics Research Notices, 2008(9): rnn081-rnn081, 2008.

