The Purity Conjecture for symmetric plabic graphs

Ray Karpman

Otterbein University

August 3, 2020

- Plabic graphs and face labels [Postnikov, 2006, Scott, 2006].
- Weakly separated collections, the Purity Conjecture [Leclerc and Zelevinsky, 1998, Scott, 2006, Oh et al., 2015].
- Symmetric plabic graphs, symmetric weakly separated collections.
- The Symmetric Purity Conjecture.
- Idea of the proof.

Plabic graphs

- Class of "planar bicolored" networks, give coordinate charts on Grassmannian [Postnikov, 2006].
 - Related to *total positivity*, cluster structures on Grassmannians [Postnikov, 2006, Scott, 2006, Lam and Galashin, 2019].
 - Weighted paths [Postnikov, 2006], almost perfect matchings [Talaska, 2008, Postnikov et al., 2009, Lam, 2013], face labels [Scott, 2006, Muller and Speyer, 2017].

Trips in plabic graphs

- Turn right at each black vertex, left at each white vertex.
- Label face with index *i* if it is to the *left* of the trip *ending* at boundary vertex *i*.

Face labels

- All faces labeled with sets of same size.
- Graph gives coordinate chart on Gr(k, m) where *m* is number of boundary vertices, *k* is number of integers in face label.

Plücker coordinates from plabic graphs

• Weights of faces give maximal minors of 2×4 matrix.

$$\begin{bmatrix} 1 & 0 & -b & -\frac{c+bd}{a} \\ 0 & 1 & a & d \end{bmatrix}$$

$$egin{array}{cccc} \Delta_{12}=1 & \Delta_{23}=b & \Delta_{34}=c & \Delta_{14}=d \ & \Delta_{13}=a & \Delta_{24}=rac{c+bd}{a} \end{array}$$

Coordinate charts from plabic graphs

- Restricting to positive weights, get isomorphism to *totally positive* Grassmannian $Gr_{>0}(k, m)$ [Postnikov, 2006].
- Minors indexed by plabic graph for Gr(k, m) form *clusters* in cluster algebra structure on the coordinate ring of Gr(k, m) [Scott, 2006].
 - These minors form a *total positivity test* for Gr(k, n).

Weakly separated collections

• Two k-element subsets of [m] are weakly separated if when the integers 1, 2, ..., m are arranged in circle, there is a chord separating $I \setminus J$ from $J \setminus I$.

Figure: *I*, *J* weakly separated.

Figure: I, J not weakly separated.

A collection C of k-element subsets of [m] is a weakly separated collection if I, J are weakly separated for any I, J ∈ C.

Conjecture ([Scott, 2006])

A weakly separated collection $C \subseteq {\binom{[m]}{k}}$ is maximal by inclusion among all such weakly separated collections if and only if |C| = m(m-k) + 1.

• Related to earlier conjecture of [Leclerc and Zelevinsky, 1998].

Theorem ([Oh et al., 2015])

Let $C \subseteq {[m] \choose k}$ be a weakly separated collection. Then the following are equivalent.

- C is maximal by inclusion.
- C is maximal by size, so |C| = m(m-k) + 1.
- C is the set of face labels of a plabic graph for Gr(k, m).

Symmetric plabic graphs

- Reflection about vertical axis reverses colors of vertices.
- Face and its mirror image have same weight.

$$\begin{bmatrix} 1 & 0 & -b & -\frac{c+b^2}{a} \\ 0 & 1 & a & b \end{bmatrix}$$

From symmetric graphs to isotropic subspaces

• Let $\langle e_1,\ldots,e_{2n}
angle$ be the standard basis of \mathbb{C}^{2n} . Define bilinear form

$$\langle e_i, e_j
angle = egin{cases} (-1)^j & ext{if } i+j=2n+1 \ 0 & ext{otherwise} \end{cases}$$

- Symmetric plabic graphs correspond to matrices whose rows are orthogonal with respect to this form.
- Example:

$$\begin{bmatrix} 1 & 0 & -b & -\frac{c+b^2}{a} \\ 0 & 1 & a & b \end{bmatrix}$$
$$1 \cdot b - 0 \cdot a + (-b) \cdot 1 - \left(-\frac{c+b^2}{a} \right) \cdot 0 = 0$$

Coordinate charts on the Lagrangian Grassmannian.

 The Lagrangian Grassmannian Λ(2n) is the subset Gr(n, 2n) corresponding to maximal isotropic subspaces of with respect to ζ, λ.

Theorem (K. 2019)

Face labels of symmetric plabic graphs give rational coordinates on $\Lambda(2n)$. Restricting to positive face weights gives an isomorphism to the totally positive part of $\Lambda(2n)$.

Symmetric weakly separated collections

• Fix a positive integer *n*. For $i \in [2n]$, let $\overline{i} = 2n + 1 - i$.

• For
$$I \in {\binom{[2n]}{n}}$$
, define $\overline{I} = [2n] \setminus \{\overline{i} \mid i \in I\}$.

• Example:
$$n = 3$$
, $I = \{2, 4, 5\}$

•
$$\bar{I} = [6] \setminus \{5, 3, 2\} = \{1, 4, 6\}$$

• A weakly separated collection C is symmetric if $\overline{I} \in C$ for each $I \in C$.

Theorem (K., 2019)

Let C be a symmetric weakly separated collection in $\binom{[2n]}{n}$. Then the following are equivalent.

- $|\mathcal{C}|$ is maximal by size, so $|\mathcal{C}| = 2n^2 + 1$.
- C is maximal by inclusion among all such symmetric weakly separated collections.
- So C is the set of face labels of a symmetric plabic graph for $\Lambda(2n)$.
 - The equivalence (1) ⇔ (2) has been generalized to a larger family of collections by [Danilov et al., 2019].

Trips in symmetric plabic graphs

- Notice: face is to the left of trip ending at *i* iff reflection is to the **right** of trip ending at *i*.
 - Label of face contains *i* iff label of reflection **does not** contain \overline{i} .
- Face has label I, reflection has label \overline{I} .

• I has a full pair $\{i, \overline{i}\}$ if $i, \overline{i} \in I$. Empty pairs are defined similarly.

Figure: I has full pair at $\{1, 8\}$, empty pair at $\{3, 6\}$.

• Get \overline{I} from I by exchanging "full pairs" and "empty pairs."

- I is admissible if I and \overline{I} are weakly separated.
- Every face label of a symmetric plabic graph is admissible.

Figure: I, \overline{I} weakly separated.

Figure: I, \overline{I} not weakly separated.

• *I* is admissible if and only if *I* does not have a full pair between two empty pairs, or an empty pair between two full pairs.

Left, right and center elements

Figure: A symmetric plabic graph.

Figure: Some face labels.

- Labels on the left have full pairs above empty pairs.
- Labels on the right have empty pairs above full pairs.
- Labels in the center have no full or empty pairs.

Total positivity tests for $\Lambda(2n)$

- Take maximal symmetric weakly separated collection, look at *center* and *left* elements only.
- These give rational coordinates on $\Lambda(2n)$.
- Total positivity test on $\Lambda(2n)$, minimal by inclusion.
- Question: are these cluster variables in a cluster structure?

Proof sketch

- Start with symmetric weakly separated collection not maximal by size.
- Build symmetric plabic graph which has all elements as face labels.

Karpman (Otterbein)

Symmetric purity conjecture

Fill in the center

- Can always add face labels to build a "chain" along midline.
- Example: start with 1234, successively replace elements to get 5678.

Karpman (Otterbein)

Symmetric purity conjecture

Fill in the rest

- Once center "filled in", any J weakly separated from current set of face labels of guaranteed to be admissible.
- Add $\{J, \overline{J}\}$, repeat until collection maximal by size.

Karpman (Otterbein)

References I

- V. Danilov, A. Karzanov, and G. Koshevoy. The purity phenomenon for symmetric separated set-systems. *Preprint*, 2019. arXiv:2007.02011 [math.CO].
- T. Lam. Notes on the totally nonnegative Grassmannian. Web, 11 2013. www.math.lsa.umich.edu/~tfylam/Math665a/positroidnotes. pdf. Accessed: 09-26-14.
- T. Lam and P. Galashin. Positroid varieties and cluster algebras. *Preprint*, 2019. arXiv:1906.03501 [math.CO].
- B. Leclerc and A. Zelevinsky. Quasicommuting families of quantum Plcker coordinates. In Advances in Math. Sciences (Kirillov's seminar), AMS Translations 181, pages 85–108, 1998.
- G. Muller and D. E. Speyer. The twist for positroid varieties. *Proceedings* of the London Mathematical Society, 115(5):1014–1071, 2017. doi: 10.1112/plms.12056.

References II

- S. Oh, A. Postnikov, and D. Speyer. Weak separation and plabic graphs. Proceedings of the London Mathematical Society, 110(3):721–754, 02 2015. doi: 10.1112/plms/pdu052.
- A. Postnikov. Total positivity, Grassmannians and networks. *Preprint*, 2006. arXiv:math/0609764 [math.CO].
- A. Postnikov, D. Speyer, and L. Williams. Matching polytopes, toric geometry, and the totally non-negative Grassmannian. *Journal of Algebraic Combinatorics*, 30:173–191, 09 2009.
- J. S. Scott. Grassmannians and cluster algebras. *Proceedings of the London Mathematical Society*, 92(2):345–380, 03 2006. doi: 10.1112/S0024611505015571.
- K. Talaska. A formula for Plücker coordinates associated with a planar network. *International Mathematics Research Notices*, 2008(9): rnn081–rnn081, 2008.