Categorification of perfect matchings

Alastair King, Bath

work in progress with I. Canakci & M. Pressland [CKP] and with B.T. Jensen & X. Su [JKS3]

Ann Arbor, Aug 2020

Toy model: perfect matchings on a circle

On a circular graph $(\mathcal{C}_0, \mathcal{C}_1)$ with *n* vertices,

a *(perfect) matching* is a choice of orientation for each edge.

A matching is specified by its label $J = (J_{\bullet}, J_{\circ})$ with $J_{\bullet} \subseteq C_1$ being the anti-clockwise edges and J_{\circ} the clockwise edges.

A matching has *chirality* (helicity) $k = (k_{\bullet}, k_{\circ}) \in \mathbb{N}^{\{\bullet, \circ\}}$, where $k_{\bullet} = \#J_{\bullet}$ and $k_{\circ} = \#J_{\circ}$, so that $k_{\bullet} + k_{\circ} = n$.

A new matching of the same chirality is obtained by flipping a source to a sink or vice versa. Chirality is the only invariant of flipping.

Cochains on a closed string

Fatten the circle to a quiver with faces $Q = (Q_0, Q_1, Q_2)$, i.e. a 2-complex s.t. ∂f is an oriented cycle, for all $f \in Q_2$.

For any such Q, a *matching* is a function $\mu \in \mathbb{N}^{Q_1}$ s.t $d\mu = 1$, on all faces $f \in Q_2$, in ptic, in lattice $\mathbb{M} = \{\mu \in \mathbb{Z}^{Q_1} : d\mu \in c(\mathbb{Z})\}.$

d is coboundary, c is constants, i is inclusion, deg is restriction of d. Now flip is adding/subtracting $d(s_i)$ for s_i basic in \mathbb{Z}^{Q_0} .

Denote by $\mathbb{M}^+ = \mathbb{M} \cap \mathbb{N}^{Q_1}$ the cone of *multi-matchings*.

For string, rank $\mathbb{M} = n + 1$ and \mathbb{M}^+ is the cone on a unit *n*-cube.

Another example: double (or *r*-fold) dimers

Question: why is wt(Σ) = 2 ? Guess: because $\chi(\mathbb{P}^1) = 2$ and some appropriate quiver Grassmannian is \mathbb{P}^1 .

Chirality revisited

Let $\mathbb{H}^1 = \mathbb{M}/d(\mathbb{Z}^{Q_0})$ and $h: \mathbb{M} \to \mathbb{H}^1$ be the quotient. Note: deg = dg $\circ h$ for dg: $\mathbb{H}^1 \to \mathbb{Z}$ and dg⁻¹(0) = $H^1(Q)$. For the closed string: $\mathbb{H}^1 \cong \{(h_{\bullet}, h_{\circ}) \in \mathbb{Z}^{\{\bullet, \circ\}} : h_{\bullet} + h_{\circ} \in n\mathbb{Z}\}$. Explicitly, write $Q_1 = Q_1^{\bullet} \cup Q_1^{\circ}$ and, for $* \in \{\bullet, \circ\}$, define two closed 1-cycles $a_* = \sum_{a \in Q_1^*} a$. Then $h_*(\mu) = \mu(a_*) = \sum_{a \in Q_1^*} \mu(a)$ and deg $(\mu) = \frac{1}{n}(h_{\bullet}(\mu) + h_{\circ}(\mu))$.

Fixed chirality $k = (k_{\bullet}, k_{\circ})$ and define $\mathbb{M}_{k} = h^{-1} \langle k \rangle$, then rank $\mathbb{M}_{k} = n$ and $\mathbb{Z} \xrightarrow{c} \mathbb{Z}^{Q_{0}} \xrightarrow{d} \mathbb{M}_{k} \xrightarrow{\text{deg}} \mathbb{Z}$ is exact.

Fact: $\mathbb{M}_k \cong$ the sublattices of the weight lattice of GL(n) that grade the homogeneous coordinate rings $\mathbb{C}[\hat{Gr}_{k_{\bullet}}^{n}]$ and $\mathbb{C}[\hat{Gr}_{k_{\circ}}^{n}]$ and deg gives the usual degree (Plücker coords Δ_J have deg 1).

Categorification of matchings

Let $Z = \mathbb{C}[[t]]$ and $Q = (Q_0, Q_1, Q_2)$ be a quiver with faces s.t. (i) the associated topological space |Q| is connected (ii) every arrow $a \in Q_1$ is in the boundary of some face $f \in Q_2$ (iii) Q admits virtual matchings, i.e. deg $\mathbb{M} \to \mathbb{Z}$ is surjective.

The category of *matrix factorizations* MF(Q; t) consists of representations M, ϕ of Q s.t.

(i) each M_i : i ∈ Q₀ is a f.g. free Z-module of rank r := rk M
(ii) the maps φ_a: M_{ta} → M_{ha} satisfy φ_{as} ∘ · · · ∘ φ_{a1} = t, when a_s + · · · + a₁ = ∂f is the boundary of a face f ∈ Q₂.

There is a natural invariant $\nu \colon \mathsf{K}(\mathsf{MF}(Q; t)) \to \mathbb{M} \colon [M] \mapsto \nu_M$ given by $\nu_M(a) = \dim \operatorname{coker} \phi_a$ and such that $\deg \nu_M = \operatorname{rk} M$.

For each (deg 1) matching $\mu \in \mathbb{M}^+$, there is a rk 1 rep'n $M(\mu), \phi$ with $\nu_{M(\mu)} = \mu$, given by $M(\mu)_i = Z$ and $\phi_a = t^{\mu(a)}$.

A flip corresponds to simple extension/shortening of the rep'n.

The closed string categorified

For
$$x_j \in Q_1^{\circ}$$
, $y_j \in Q_1^{\bullet}$ and fixed $k = (k_{\bullet}, k_{\circ})$,
define Z-algebra C_k as path algebra ZQ mod
 $xy = t = yx$, $x^{k_{\bullet}} = y^{k_{\circ}} (\Rightarrow x^n = t^{k_{\circ}}, y^n = t^{k_{\bullet}})$.

$$y_{5}$$

$$y_{5}$$

$$y_{1}$$

$$y_{4}$$

$$x_{4}$$

$$x_{2}$$

$$y_{3}$$

$$y_{2}$$

$$y_{3}$$

The category CM C_k of f.g. C_k -modules free over Z is a full exact subcategory of MF(Q; t) and $\nu \colon \mathsf{K}(\mathsf{CM} C_k) \xrightarrow{\cong} \mathbb{M}_k \subseteq \mathsf{Wt} GL(n).$

CM C_k contains $M(\mu)$ for all μ of chirality k; these are all the rk 1 modules (up to isom).

Theorem [JKS1] There is a cluster character Ψ : CM $C_k \to \mathbb{C}[\hat{Gr}_k^n]$ such that wt $\Psi_M = \nu_M$. In particular, $\Psi_{M(J)} = \Delta_J$.

Fact: C_k is *thin*, i.e. each component e_iCe_j , for $i, j \in Q_0$, is a free Z-module of rank 1. Hence, for all $i \in Q_0$, projectives $\mathcal{P}_i = Ce_i$ and (CM-)injectives $\mathcal{I}_i = (e_iC)^{\vee} := \operatorname{Hom}_Z(e_iC, Z)$ are matching modules M(J), in fact, for J some cyclic interval.

Plabic graph G and dual quiver with faces Q

Arrow directions follows strands. Boundary arrows and backwards paths in boundary faces are $x = x^{\circ}$ or $y = x^{\bullet}$ from orientation.

Dimer algebra A has CM A = MF(Q; t), with K(CM A) = M and all rk 1 modules are matching modules $M(\mu)$.

All $M \in CM A$ satisfy chirality relation $x^{k_{\bullet}} = y^{k_{\circ}}$ for some fixed k.

Matchings on G are cochains on Q (Poincaré duality)

Since |Q| is a disc, both horizontal sequences are exact and hence rank $\mathbb{M} = \#Q_0$.

There is a *bdry value map* $\mathfrak{d} \colon \mathbb{M} \to \mathbb{M}_k$ (compatible with deg) that is dual to inclusion of chains: path $x^* \mapsto \sum$ arrows in x^* .

Explicitly $\mathfrak{d}\mu = J = (J_{\bullet}, J_{\circ})$, where $J_* = \{j \in \mathcal{C}_1 : \mu(x_i^*) = 1\}$.

The restriction ρ_{AC} : CM $A \rightarrow$ CM C categorifies \mathfrak{d} .

Projectives and injectives

Consistency $\Rightarrow A$ is thin, so projectives $\mathcal{P}_i = Ae_i$ and injectives $\mathcal{I}_i = (e_i A)^{\vee}$ are matching modules $M(\mu)$.. but which? [Mu-Sp] define bases of matchings $\mathfrak{m}^{s/t} : \mathbb{Z}^{Q_0} \to \mathbb{M}$, whose bdry values $\mathfrak{dm}_j^{s/t}$ give source (s) and target (t) labellings for *G*. *Prop* [CKP] For all $j \in Q_0$, we have $[\mathcal{P}_i] = \mathfrak{m}_i^s$ and $[\mathcal{I}_i] = \mathfrak{m}_i^t$.

Boundary algebra, necklace and positroid

Bdry algebra
$$B=eAe$$
, where $e=\sum_{i\in \mathcal{C}_0}e_i$ is bdry idempotent.

Restriction ρ_{AC} factorises as CM $A \xrightarrow{\rho_{AB}} CM B \xrightarrow{\rho_{BC}} CM C$, where $\rho_{AB}: X \mapsto eX$ and ρ_{BC} is a fully faithful embedding.

If $i \in C_0$, then $\rho_{AB} \colon Ae_i \mapsto Be_i$ and $(e_i A)^{\vee} \mapsto (e_i B)^{\vee}$, so these are the matching modules $M(N_i)$ and $M(N'_i)$ for necklace N and reverse necklace N'.

In other words, the necklace is B.

Matching module M(J) is in CM B iff J is in the positroid.

Projective resolution

Can view $\mathfrak{m} = \mathfrak{m}^{s}$ as the map $K(\mathcal{P}A) \xrightarrow{\cong} K(CMA)$ induced by inclusion of category $\mathcal{P}A$ of projective A-modules, thus \mathfrak{m}^{-1} comes from projective resolution.

Thm [CKP] Each $M = M(\mu)$ in CM A has a projective resolution

[Ma-Sc] define weights for internal arrows $\operatorname{wt}(a) \in \mathbb{Z}^{Q_0} = \mathsf{K}(\mathcal{P}A)$. *Cor* [CKP] For $\mu \in \mathbb{M}$, $\mathfrak{m}^{-1}(\mu) = \sum_{\substack{a \in Q_1 \\ ext}} \mu(a)[P_{ha}] + \operatorname{deg}(\mu) \underbrace{\sum_{\substack{i \in Q_0 \\ int}}^{\operatorname{wt}(G)} - \sum_{\substack{a \in Q_1 \\ int}}^{\operatorname{wt}(\mu)} \mu(a)\operatorname{wt}(a)}_{int}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prop [CKP] For all $j \in Q_0$, we have $\mathfrak{m}^{-1}(\mathfrak{m}_j^s) = [P_j]$.

Newton-Okounkov cone

The restriction functor ρ_{AB} : CM $A \to$ CM B: $X \mapsto eA \otimes_A X$ has a right adjoint F: CM $B \to$ CM A: $M \mapsto$ Hom_B(eA, M).

Here the counit $\eta_X : X \to FeX$ is an embedding, i.e., if eX = M, then $X \subseteq FM$, so FM is the maximal module which restricts to M.

For M(J) in CM B, FM(J) is a matching module $M(\mu)$ and μ is the minimal matching with $\vartheta \mu = J$ in the flip partial order.

Claim [JKS3] For $M \in CM C$, i.e. the \hat{Gr}_k^n case, $z^{[FM]}$ is the leading monomial (a la [Ri-Wi]) in network coords of the clus. char. Ψ_M .

See [JKS2] for $\Psi_{M(J)} = \Delta_J$, which is given in network coords by the dimer partition function: $\mathcal{Z}_J = \sum_{\mu: \mathfrak{d}\mu = J} z^{\mu}$

Expectation: (a) The set $\{[FM] \in \mathbb{M} : M \text{ in } CM C\}$ is precisely the integral points in the Ri-Wi Newton-Okounkov cone for \hat{Gr}_k^n . (b) a basis of $\mathbb{C}[\hat{Gr}_k^n]$ is given by $\{\Psi_M : M \text{ general in } CM C\}$. (c) Similar holds for positroid \hat{Gr}_{π} , by replacing C by B.

Background: network torus and Muller-Speyer twist

 $\mathbb{M} \supseteq deg^{-1}(0) \cong \mathbb{Z}^{Q_0}/c\mathbb{Z}$, which is the character lattice of the usual network torus, in monodromy coordinates.

Thus \mathbb{M} is the character lattice of a torus \mathbb{M}^* that lifts the network torus to the positroid cone $\hat{\mathsf{Gr}}^\circ_{\pi}$, using the dimer part. fun.

$$\mathbb{C}[\widehat{\mathsf{Gr}}_{\pi}^{\circ}] \to \mathbb{C}[\mathbb{M}^*] \colon \Delta_J \mapsto \mathcal{Z}_J := \sum_{\mu:\mathfrak{d}\mu=J} z^{\mu}$$

Note: for $J \in N$, i.e. Δ_J frozen, \mathcal{Z}_J is a monomial so invertible. *Thm:* [Mu-Sp] There is an automorphism $\tau: \hat{\mathsf{Gr}}_{\pi}^{\circ} \to \hat{\mathsf{Gr}}_{\pi}^{\circ}$ s.t.

Application: Marsh-Scott twist

Rearrange the \mathfrak{m}^{-1} formula, when μ is a (deg 1) matching to get

$$\operatorname{wt}(\mu) - \operatorname{wt}(G) = \sum_{a \in \partial \mu} [P_{ha}] - \mathfrak{m}^{-1}(\mu)$$
 (*)

Recall: [Ma-Sc] define a twist σ_{\bullet} : $\hat{G}r_k^n \rightarrow \hat{G}r_k^n$ and prove that

$$\sigma_{\bullet}^{\cdot}(\Delta_J) = \mathcal{Z}_J^{MS} := z^{-\texttt{wt}(G)} \sum_{\mu: \mathfrak{d}\mu = J} z^{\texttt{wt}(\mu)} \quad \text{in cluster coords}$$

Define $\mathfrak{p}^{\bullet} \colon \mathbb{M}_k \to \mathbb{Z}^{Q_0} \colon J \mapsto \sum_{a \in J_{\bullet}} [P_{ha}].$

Then $\mathfrak{dmp}^{\bullet}([M]) = [P^{\bullet}M] \in \mathbb{M}_k$ for a projective cover $P^{\bullet}M \to M$.

$$(*) \Rightarrow \qquad \mathcal{Z}_{J}^{MS} = z^{\mathfrak{p}^{\bullet}(J)} \sum_{\mu: \mathfrak{d}\mu = J} z^{-\mathfrak{m}^{-1}(\mu)}$$

Thm [CKP] For M(J) in CM C, we have $\sigma_{\bullet}(\Delta_J) = \Psi_{\Omega^{\bullet}M(J)}$, where $\Omega^{\bullet}M$ is the syzygy ker $P^{\bullet}M \to M$.

References

[JKS1] B.T. Jensen, A. King, X. Su, *A categorification of Grassmannian cluster algebras*, Proc. L.M.S. **113** (2016) 185–212 (arXiv:1309.7301)

[JKS2] B.T. Jensen, A. King, X. Su, *Categorification and the quantum Grassmannian*, arXiv:1904.07849

[Ma-Sc] R.J. Marsh, J. Scott, *Twists of Plücker coordinates as dimer partition functions*, Co. Math. Phys. **341** (2016) 821–884 (arXiv:1309.6630)

[Mu-Sp] G. Muller, D.E. Speyer, *The twist for positroid varieties*, Proc. L.M.S. **115** (2017) 1014–1071 (arXiv:1606.08383)

[Ri-Wi] K. Rietsch, L. Williams, *Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians*, Duke Math. J. **168** (2019) 3437–3527 (arXiv:1712.00447v2)