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Toy model: perfect matchings on a circle

On a circular graph (C0, C1) with n vertices,
a (perfect) matching is a choice of orientation for each edge.

A matching is specified by its label J = (J•, J◦) with J• ⊆ C1 being
the anti-clockwise edges and J◦ the clockwise edges.

A matching has chirality (helicity) k = (k•, k◦) ∈ N{•,◦},
where k• = #J• and k◦ = #J◦, so that k• + k◦ = n.

A new matching of the same chirality is obtained
by flipping a source to a sink or vice versa.
Chirality is the only invariant of flipping.



Cochains on a closed string

Fatten the circle to a quiver with faces
Q = (Q0,Q1,Q2), i.e. a 2-complex s.t.
∂f is an oriented cycle, for all f ∈ Q2.

For any such Q, a matching is a function µ ∈ NQ1 s.t dµ = 1, on
all faces f ∈ Q2, in ptic, in lattice M = {µ ∈ ZQ1 : dµ ∈ c(Z)}.

Z ZQ0 ZQ1 ZQ2

Z ZQ0 M Z

c d d

c d deg
i c

d is coboundary, c is constants, i is inclusion, deg is restriction of d.
Now flip is adding/subtracting d(si ) for si basic in ZQ0 .

Denote by M+ = M ∩ NQ1 the cone of multi-matchings.

For string, rank M = n + 1 and M+ is the cone on a unit n-cube.



Another example: double (or r-fold) dimers
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Σ degµ = 2

Question: why is wt(Σ) = 2 ? Guess: because χ(P1) = 2 and
some appropriate quiver Grassmannian is P1.



Chirality revisited

Let H1 = M/d
(
ZQ0

)
and h : M→ H1 be the quotient.

Note: deg = dg ◦h for dg : H1 → Z and dg−1(0) = H1(Q).

For the closed string: H1 ∼= {(h•, h◦) ∈ Z{•,◦} : h• + h◦ ∈ nZ}.

Explicitly, write Q1 = Q•1 ∪ Q◦1 and, for ∗ ∈ {•, ◦}, define two
closed 1-cycles a∗ =

∑
a∈Q∗

1
a. Then h∗(µ) = µ(a∗) =

∑
a∈Q∗

1
µ(a)

and deg(µ) = 1
n (h•(µ) + h◦(µ)).

Fixed chirality k = (k•, k◦) and define Mk = h−1〈k〉,
then rank Mk = n and Z c−→ ZQ0

d−→Mk
deg−→ Z is exact.

Fact: Mk
∼= the sublattices of the weight lattice of GL(n) that

grade the homogeneous coordinate rings C[Ĝr
n
k• ] and C[Ĝr

n
k◦ ]

and deg gives the usual degree (Plücker coords ∆J have deg 1).



Categorification of matchings

Let Z = C[[t]] and Q = (Q0,Q1,Q2) be a quiver with faces s.t.

(i) the associated topological space |Q| is connected

(ii) every arrow a ∈ Q1 is in the boundary of some face f ∈ Q2

(iii) Q admits virtual matchings, i.e. degM→ Z is surjective.

The category of matrix factorizations MF(Q; t) consists of
representations M, φ of Q s.t.

(i) each Mi : i ∈ Q0 is a f.g. free Z -module of rank r := rkM

(ii) the maps φa : Mta → Mha satisfy φas ◦ · · · ◦ φa1 = t,
when as + · · ·+ a1 = ∂f is the boundary of a face f ∈ Q2.

There is a natural invariant ν : K(MF(Q; t))→M : [M] 7→ νM
given by νM(a) = dim coker φa and such that deg νM = rkM.

For each (deg 1) matching µ ∈M+, there is a rk 1 rep’n M(µ), φ
with νM(µ) = µ, given by M(µ)i = Z and φa = tµ(a).

A flip corresponds to simple extension/shortening of the rep’n.



The closed string categorified

For xj ∈ Q◦1 , yj ∈ Q•1 and fixed k = (k•, k◦),
define Z -algebra Ck as path algebra ZQ mod
xy = t = yx , xk• = yk◦ (⇒ xn = tk◦ , yn = tk•).
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The category CMCk of f.g. Ck -modules free over Z is a full exact

subcategory of MF(Q; t) and ν : K(CMCk)
∼=−→Mk ⊆WtGL(n).

CMCk contains M(µ) for all µ of chirality k ; these are all the rk 1
modules (up to isom).

Theorem [JKS1] There is a cluster character Ψ : CMCk → C[Ĝr
n
k ]

such that wt ΨM = νM . In particular, ΨM(J) = ∆J .

Fact: Ck is thin, i.e. each component eiCej , for i , j ∈ Q0, is a free
Z -module of rank 1. Hence, for all i ∈ Q0, projectives Pi = Cei
and (CM-)injectives Ii = (eiC )∨ := HomZ (eiC ,Z ) are matching
modules M(J), in fact, for J some cyclic interval.



Plabic graph G and dual quiver with faces Q
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Arrow directions follows strands. Boundary arrows and backwards
paths in boundary faces are x = x◦ or y = x• from orientation.

Dimer algebra A has CMA = MF(Q; t), with K(CMA) = M and
all rk 1 modules are matching modules M(µ).

All M ∈ CMA satisfy chirality relation xk• = yk◦ for some fixed k .



Matchings on G are cochains on Q (Poincaré duality)

Z ZQ0 ZQ1 ZQ2

Z ZQ0 M Z

c d d

c d deg
i c

Since |Q| is a disc, both horizontal sequences are exact and hence
rank M = #Q0.

There is a bdry value map d : M→Mk (compatible with deg) that
is dual to inclusion of chains: path x∗ 7→

∑
arrows in x∗.

Explicitly dµ = J = (J•, J◦), where J∗ = {j ∈ C1 : µ(x∗j ) = 1}.

The restriction ρAC : CMA→ CMC categorifies d.



Projectives and injectives

Consistency ⇒ A is thin, so projectives Pi = Aei and injectives
Ii = (eiA)∨ are matching modules M(µ) .. but which?

[Mu-Sp] define bases of matchings ms/t : ZQ0 →M, whose bdry

values dm
s/t
j give source (s) and target (t) labellings for G .

Prop [CKP] For all j ∈ Q0, we have [Pj ] = ms
j and [Ij ] = mt

j .
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Boundary algebra, necklace and positroid

Bdry algebra B = eAe, where e =
∑
i∈C0

ei is bdry idempotent.

Restriction ρAC factorises as CMA
ρAB−→ CMB

ρBC−→ CMC , where
ρAB : X 7→ eX and ρBC is a fully faithful embedding.

If i ∈ C0, then ρAB : Aei 7→ Bei and (eiA)∨ 7→ (eiB)∨, so these are
the matching modules M(Ni ) and M(N ′i ) for necklace N and
reverse necklace N ′.

In other words, the necklace is B.

Matching module M(J) is in CMB iff J is in the positroid.



Projective resolution

Can view m = ms as the map K(PA)
∼=−→ K(CMA) induced by

inclusion of category PA of projective A-modules, thus m−1 comes
from projective resolution.

Thm [CKP] Each M = M(µ) in CMA has a projective resolution⊕
a∈µ
int

Aeta →
⊕
a 6∈µ

Aeha →
⊕
i∈Q0

Aei

[Ma-Sc] define weights for internal arrows wt(a) ∈ ZQ0 = K(PA).

Cor [CKP] For µ ∈M,

m−1(µ) =
∑
a∈Q1
ext

µ(a)[Pha] + deg(µ)

wt(G)︷ ︸︸ ︷∑
i∈Q0
int

[Pi ]−

wt(µ)︷ ︸︸ ︷∑
a∈Q1
int

µ(a)wt(a)

Prop [CKP] For all j ∈ Q0, we have m−1(ms
j ) = [Pj ].



Newton-Okounkov cone

The restriction functor ρAB : CMA→ CMB : X 7→ eA⊗A X has a
right adjoint F : CMB → CMA : M 7→ HomB(eA,M).

Here the counit ηX : X → FeX is an embedding, i.e., if eX = M,
then X ⊆ FM, so FM is the maximal module which restricts to M.

For M(J) in CMB, FM(J) is a matching module M(µ) and µ is
the minimal matching with dµ = J in the flip partial order.

Claim [JKS3] For M ∈ CMC , i.e. the Ĝr
n
k case, z [FM] is the leading

monomial (a la [Ri-Wi]) in network coords of the clus. char. ΨM .

See [JKS2] for ΨM(J) = ∆J , which is given in
network coords by the dimer partition function:

ZJ =
∑

µ:dµ=J

zµ

Expectation: (a) The set {[FM] ∈M : M in CMC} is precisely the
integral points in the Ri-Wi Newton-Okounkov cone for Ĝr

n
k .

(b) a basis of C[Ĝr
n
k ] is given by {ΨM : M general in CMC}.

(c) Similar holds for positroid Ĝrπ, by replacing C by B.



Background: network torus and Muller-Speyer twist

M ⊇ deg−1(0) ∼= ZQ0/cZ, which is the character lattice of the
usual network torus, in monodromy coordinates.

Thus M is the character lattice of a torus M∗ that lifts the network
torus to the positroid cone Ĝr

◦
π, using the dimer part. fun.

C
[
Ĝr
◦
π

]
→ C

[
M∗
]

: ∆J 7→ ZJ :=
∑

µ:dµ=J

zµ

Note: for J ∈ N, i.e. ∆J frozen, ZJ is a monomial so invertible.

Thm: [Mu-Sp] There is an automorphism τ : Ĝr
◦
π → Ĝr

◦
π s.t.

C
[
M∗
]

C
[
(C∗)Q0

]

C
[
Ĝr
◦
π

]
C
[
Ĝr
◦
π

]
(−m−1)∗·

τ ·
network cluster



Application: Marsh-Scott twist

Rearrange the m−1 formula, when µ is a (deg 1) matching to get

wt(µ)− wt(G ) =
∑
a∈dµ

[Pha]−m−1(µ) (∗)

Recall: [Ma-Sc] define a twist σ• : Ĝr
n
k 99K Ĝr

n
k and prove that

σ·•(∆J) = ZMS
J := z−wt(G)

∑
µ:dµ=J

zwt(µ) in cluster coords

Define p• : Mk → ZQ0 : J 7→
∑

a∈J• [Pha].

Then dmp•([M]) = [P•M] ∈Mk for a projective cover P•M → M.

(∗) ⇒ ZMS
J = zp

•(J)
∑

µ:dµ=J

z−m
−1(µ)

Thm [CKP] For M(J) in CMC , we have σ·•(∆J) = ΨΩ•M(J),
where Ω•M is the syzygy kerP•M → M.
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