Categorification of perfect matchings

Alastair King, Bath
work in progress with I. Canakci \& M. Pressland [CKP] and with B.T. Jensen \& X. Su [JKS3]

Ann Arbor, Aug 2020

Toy model: perfect matchings on a circle

On a circular graph $\left(\mathcal{C}_{0}, \mathcal{C}_{1}\right)$ with n vertices,
 a (perfect) matching is a choice of orientation for each edge.

A matching is specified by its label $J=\left(J_{\bullet}, J_{0}\right)$ with $J_{\bullet} \subseteq \mathcal{C}_{1}$ being the anti-clockwise edges and J 。 the clockwise edges.
A matching has chirality (helicity) $k=\left(k_{\bullet}, k_{0}\right) \in \mathbb{N}^{\{\bullet, 0\}}$, where $k_{\bullet}=\# J_{\bullet}$ and $k_{0}=\# J_{0}$, so that $k_{\bullet}+k_{0}=n$.

A new matching of the same chirality is obtained by flipping a source to a sink or vice versa. Chirality is the only invariant of flipping.

Cochains on a closed string

Fatten the circle to a quiver with faces $Q=\left(Q_{0}, Q_{1}, Q_{2}\right)$, i.e. a 2-complex s.t. ∂f is an oriented cycle, for all $f \in Q_{2}$.

For any such Q, a matching is a function $\mu \in \mathbb{N}^{Q_{1}}$ s.t $d \mu=1$, on all faces $f \in Q_{2}$, in ptic, in lattice $\mathbb{M}=\left\{\mu \in \mathbb{Z}^{Q_{1}}: d \mu \in c(\mathbb{Z})\right\}$.

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\mathrm{c}} \mathbb{Z}^{Q_{0}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{1}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{2}} \\
& \|\mathbb{Z} \xrightarrow{c}\|_{\mathbb{Q}} \xrightarrow{Q_{0}} \xrightarrow{i} \mathbb{i} \xrightarrow{\operatorname{deg}}{ }^{\uparrow} \mathrm{c}
\end{aligned}
$$

d is coboundary, c is constants, i is inclusion, deg is restriction of d . Now flip is adding/subtracting $d\left(s_{i}\right)$ for s_{i} basic in $\mathbb{Z}^{Q_{0}}$.

Denote by $\mathbb{M}^{+}=\mathbb{M} \cap \mathbb{N}^{Q_{1}}$ the cone of multi-matchings.
For string, rank $\mathbb{M}=n+1$ and \mathbb{M}^{+}is the cone on a unit n-cube.

Another example: double (or r-fold) dimers

Σ

$\operatorname{deg} \mu=2$

Question: why is $\operatorname{wt}(\Sigma)=2$? Guess: because $\chi\left(\mathbb{P}^{1}\right)=2$ and some appropriate quiver Grassmannian is \mathbb{P}^{1}.

Chirality revisited

Let $\mathbb{H}^{1}=\mathbb{M} / d\left(\mathbb{Z}^{Q_{0}}\right)$ and $h: \mathbb{M} \rightarrow \mathbb{H}^{1}$ be the quotient.
Note: $\operatorname{deg}=\operatorname{dg} \circ h$ for $\operatorname{dg}: \mathbb{H}^{1} \rightarrow \mathbb{Z}$ and $\operatorname{dg}^{-1}(0)=H^{1}(Q)$.
For the closed string: $\mathbb{H}^{1} \cong\left\{\left(h_{\bullet}, h_{\circ}\right) \in \mathbb{Z}^{\{\bullet, \circ\}}: h_{\bullet}+h_{\circ} \in n \mathbb{Z}\right\}$.
Explicitly, write $Q_{1}=Q_{1}^{\bullet} \cup Q_{1}^{\circ}$ and, for $* \in\{\bullet, \circ\}$, define two closed 1-cycles $a_{*}=\sum_{a \in Q_{1}^{*}} a$. Then $h_{*}(\mu)=\mu\left(a_{*}\right)=\sum_{a \in Q_{1}^{*}} \mu(a)$ and $\operatorname{deg}(\mu)=\frac{1}{n}\left(h_{\bullet}(\mu)+h_{\circ}(\mu)\right)$.

Fixed chirality $k=\left(k_{\bullet}, k_{0}\right)$ and define $\mathbb{M}_{k}=h^{-1}\langle k\rangle$, then rank $\mathbb{M}_{k}=n$ and $\mathbb{Z} \xrightarrow{c} \mathbb{Z}^{Q_{0}} \xrightarrow{d} \mathbb{M}_{k} \xrightarrow{\text { deg }} \mathbb{Z}$ is exact.
Fact: $\mathbb{M}_{k} \cong$ the sublattices of the weight lattice of $G L(n)$ that grade the homogeneous coordinate rings $\mathbb{C}\left[\hat{\mathrm{G}} \mathrm{r}_{k_{0}}^{n}\right]$ and $\mathbb{C}\left[\hat{\mathrm{G}} \mathrm{r}_{k_{0}}^{n}\right]$ and deg gives the usual degree (Plücker coords Δ_{J} have deg 1).

Categorification of matchings

Let $Z=\mathbb{C}[[t]]$ and $Q=\left(Q_{0}, Q_{1}, Q_{2}\right)$ be a quiver with faces s.t.
(i) the associated topological space $|Q|$ is connected
(ii) every arrow $a \in Q_{1}$ is in the boundary of some face $f \in Q_{2}$
(iii) Q admits virtual matchings, i.e. $\operatorname{deg} \mathbb{M} \rightarrow \mathbb{Z}$ is surjective.

The category of matrix factorizations $\operatorname{MF}(Q ; t)$ consists of representations M, ϕ of Q s.t.
(i) each $M_{i}: i \in Q_{0}$ is a f.g. free Z-module of rank $r:=r \mathrm{rk} M$
(ii) the maps $\phi_{a}: M_{t a} \rightarrow M_{h a}$ satisfy $\phi_{a_{s}} \circ \cdots \circ \phi_{a_{1}}=t$, when $a_{s}+\cdots+a_{1}=\partial f$ is the boundary of a face $f \in Q_{2}$.

There is a natural invariant $\nu: \mathrm{K}(\mathrm{MF}(Q ; t)) \rightarrow \mathbb{M}:[M] \mapsto \nu_{M}$ given by $\nu_{M}(a)=\operatorname{dim}$ coker ϕ_{a} and such that $\operatorname{deg} \nu_{M}=\mathrm{rk} M$.

For each (deg 1) matching $\mu \in \mathbb{M}^{+}$, there is a rk 1 rep'n $M(\mu), \phi$ with $\nu_{M(\mu)}=\mu$, given by $M(\mu)_{i}=Z$ and $\phi_{a}=t^{\mu(\mathrm{a})}$.
A flip corresponds to simple extension/shortening of the rep'n.

The closed string categorified

For $x_{j} \in Q_{1}^{\circ}, y_{j} \in Q_{i}^{\mathbf{0}}$ and fixed $k=\left(k_{\mathbf{0}}, k_{0}\right)$, define Z-algebra C_{k} as path algebra $Z Q \bmod$ $x y=t=y x, x^{k_{\bullet}}=y^{k_{0}}\left(\Rightarrow x^{n}=t^{k_{0}}, y^{n}=t^{k_{0}}\right)$.

The category $\mathrm{CM} C_{k}$ of f.g. C_{k}-modules free over Z is a full exact subcategory of $\operatorname{MF}(Q ; t)$ and $\nu: \mathrm{K}\left(\mathrm{CM} C_{k}\right) \stackrel{\cong}{\cong} \mathbb{M}_{k} \subseteq \operatorname{Wt} G L(n)$.

CM C_{k} contains $M(\mu)$ for all μ of chirality k; these are all the rk 1 modules (up to isom).

Theorem [JKS1] There is a cluster character $\Psi: \mathrm{CM} C_{k} \rightarrow \mathbb{C}\left[\hat{\mathrm{G}}_{\mathrm{r}}^{n}{ }_{k}^{n}\right]$ such that wt $\Psi_{M}=\nu_{M}$. In particular, $\Psi_{M(J)}=\Delta_{J}$.
Fact: C_{k} is thin, i.e. each component $e_{i} C e_{j}$, for $i, j \in Q_{0}$, is a free Z-module of rank 1 . Hence, for all $i \in Q_{0}$, projectives $\mathcal{P}_{i}=C e_{i}$ and (CM-)injectives $\mathcal{I}_{i}=\left(e_{i} C\right)^{\vee}:=\operatorname{Hom}_{Z}\left(e_{i} C, Z\right)$ are matching modules $M(J)$, in fact, for J some cyclic interval.

Plabic graph G and dual quiver with faces Q

Arrow directions follows strands. Boundary arrows and backwards paths in boundary faces are $x=x^{\circ}$ or $y=x^{\bullet}$ from orientation.

Dimer algebra A has $\mathrm{CM} A=\operatorname{MF}(Q ; t)$, with $\mathrm{K}(\mathrm{CM} A)=\mathbb{M}$ and all rk 1 modules are matching modules $M(\mu)$.
All $M \in \mathrm{CM} A$ satisfy chirality relation $x^{k_{\bullet}}=y^{k_{0}}$ for some fixed k.

Matchings on G are cochains on Q (Poincaré duality)

$$
\begin{aligned}
& \mathbb{Z} \xrightarrow{\mathrm{c}} \mathbb{Z}^{Q_{0}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{1}} \xrightarrow{\mathrm{~d}} \mathbb{Z}^{Q_{2}} \\
& \|\underset{\mathbb{Z}}{ } \xrightarrow{c}\|_{\mathbb{Z}}^{Q_{0}} \xrightarrow{d} \stackrel{i}{\mathbb{i}} \xrightarrow{\operatorname{deg}}{ }^{\dagger}{ }^{\text {c }}
\end{aligned}
$$

Since $|Q|$ is a disc, both horizontal sequences are exact and hence rank $\mathbb{M}=\# Q_{0}$.

There is a bdry value map $\mathfrak{d}: \mathbb{M} \rightarrow \mathbb{M}_{k}$ (compatible with deg) that is dual to inclusion of chains: path $x^{*} \mapsto \sum$ arrows in x^{*}.

Explicitly $\mathfrak{d} \mu=J=\left(J_{\bullet}, J_{0}\right)$, where $J_{*}=\left\{j \in \mathcal{C}_{1}: \mu\left(x_{j}^{*}\right)=1\right\}$.
The restriction $\rho_{A C}: C M A \rightarrow$ CM C categorifies \mathfrak{d}.

Projectives and injectives

Consistency $\Rightarrow A$ is thin, so projectives $\mathcal{P}_{i}=A e_{i}$ and injectives $\mathcal{I}_{i}=\left(e_{i} A\right)^{\vee}$ are matching modules $M(\mu)$.. but which?
[Mu-Sp] define bases of matchings $\mathfrak{m}^{s / t}: \mathbb{Z}^{Q_{0}} \rightarrow \mathbb{M}$, whose bdry values $\mathfrak{d m}_{j}^{\mathrm{s} / \mathrm{t}}$ give source (s) and target (t) labellings for G.
Prop $[\mathrm{CKP}]$ For all $j \in Q_{0}$, we have $\left[\mathcal{P}_{j}\right]=\mathfrak{m}_{j}^{\mathrm{s}}$ and $\left[\mathcal{I}_{j}\right]=\mathfrak{m}_{j}^{\mathrm{t}}$.

Boundary algebra, necklace and positroid

Bdry algebra $B=e A e$, where $e=\sum_{i \in \mathcal{C}_{0}} e_{i}$ is bdry idempotent.
Restriction $\rho_{A C}$ factorises as $\mathrm{CM} A \xrightarrow{\rho_{A B}} \mathrm{CM} B \xrightarrow{\rho_{B C}} \mathrm{CM} C$, where $\rho_{A B}: X \mapsto e X$ and $\rho_{B C}$ is a fully faithful embedding.

If $i \in \mathcal{C}_{0}$, then $\rho_{A B}: A e_{i} \mapsto B e_{i}$ and $\left(e_{i} A\right)^{\vee} \mapsto\left(e_{i} B\right)^{\vee}$, so these are the matching modules $M\left(N_{i}\right)$ and $M\left(N_{i}^{\prime}\right)$ for necklace N and reverse necklace N^{\prime}.

In other words, the necklace is B.
Matching module $M(J)$ is in CM B iff J is in the positroid.

Projective resolution

Can view $\mathfrak{m}=\mathfrak{m}^{\text {s }}$ as the map $\mathrm{K}(\mathcal{P} A) \xrightarrow{\cong} \mathrm{K}(\mathrm{CM} A)$ induced by inclusion of category $\mathcal{P} A$ of projective A-modules, thus \mathfrak{m}^{-1} comes from projective resolution.

Thm [CKP] Each $M=M(\mu)$ in CM A has a projective resolution

$$
\bigoplus_{\substack{a \in \mu \\ i n t}} A e_{t a} \rightarrow \bigoplus_{a \notin \mu} A e_{h a} \rightarrow \bigoplus_{i \in Q_{0}} A e_{i}
$$

$[\mathrm{Ma}-\mathrm{Sc}]$ define weights for internal arrows wt $(a) \in \mathbb{Z}^{Q_{0}}=\mathrm{K}(\mathcal{P} A)$. $\operatorname{Cor}[\mathrm{CKP}]$ For $\mu \in \mathbb{M}$,

$$
\mathfrak{m}^{-1}(\mu)=\sum_{\substack{a \in Q_{1} \\ e x t}} \mu(a)\left[P_{h a}\right]+\operatorname{deg}(\mu) \overbrace{\sum_{\substack{i \in Q_{0} \\ i n t}}\left[P_{i}\right]}^{\operatorname{wt}(G)}-\overbrace{\sum_{\substack{a \in Q_{1} \\ i n t}} \mu(a) w t(a)}^{\operatorname{wtt}(\mu)}
$$

Prop [CKP] For all $j \in Q_{0}$, we have $\mathfrak{m}^{-1}\left(\mathfrak{m}_{j}^{\mathrm{s}}\right)=\left[P_{j}\right]$.

Newton-Okounkov cone

The restriction functor $\rho_{A B}: \mathrm{CM} A \rightarrow \mathrm{CM} B: X \mapsto e A \otimes_{A} X$ has a right adjoint $F: \mathrm{CM} B \rightarrow \mathrm{CM} A: M \mapsto \operatorname{Hom}_{B}(e A, M)$.

Here the counit $\eta_{X}: X \rightarrow F e X$ is an embedding, i.e., if $e X=M$, then $X \subseteq F M$, so $F M$ is the maximal module which restricts to M.

For $M(J)$ in CM $B, F M(J)$ is a matching module $M(\mu)$ and μ is the minimal matching with $\mathfrak{d} \mu=J$ in the flip partial order.
Claim [JKS3] For $M \in \mathrm{CM} C$, i.e. the $\hat{\mathrm{G}} \mathrm{r}_{k}^{n}$ case, $z^{[F M]}$ is the leading monomial (a la [Ri-Wi]) in network coords of the clus. char. Ψ_{M}. See [JKS2] for $\Psi_{M(J)}=\Delta_{J}$, which is given in network coords by the dimer partition function:

$$
\mathcal{Z}_{J}=\sum_{\mu: จ \mu=J} z^{\mu}
$$

Expectation: (a) The set $\{[F M] \in \mathbb{M}: M$ in $C M C\}$ is precisely the integral points in the Ri-Wi Newton-Okounkov cone for $\hat{\mathrm{G}}^{2}{ }_{k}{ }^{n}$.
(b) a basis of $\mathbb{C}\left[\hat{G} r_{k}^{n}\right]$ is given by $\left\{\Psi_{M}: M\right.$ general in CM $\left.C\right\}$.
(c) Similar holds for positroid $\hat{\mathrm{G}} \mathrm{r}_{\pi}$, by replacing C by B.

Background: network torus and Muller-Speyer twist

$\mathbb{M} \supseteq \operatorname{deg}^{-1}(0) \cong \mathbb{Z}^{Q_{0}} / c \mathbb{Z}$, which is the character lattice of the usual network torus, in monodromy coordinates.

Thus \mathbb{M} is the character lattice of a torus \mathbb{M}^{*} that lifts the network torus to the positroid cone $\hat{\mathrm{G}} \mathrm{r}_{\pi}^{\circ}$, using the dimer part. fun.

$$
\mathbb{C}\left[\hat{\mathrm{G}}_{\pi}^{\circ}\right] \rightarrow \mathbb{C}\left[\mathbb{M}^{*}\right]: \Delta_{J} \mapsto \mathcal{Z}_{J}:=\sum_{\mu: \partial \mu=J} z^{\mu}
$$

Note: for $J \in N$, i.e. Δ_{J} frozen, \mathcal{Z}_{J} is a monomial so invertible. Thm: [Mu-Sp] There is an automorphism $\tau: \hat{\mathrm{G}}_{\pi}^{\circ} \rightarrow \hat{\mathrm{G}}_{\pi}^{\circ}$ s.t.

$$
\text { network } \uparrow
$$

\[

\]

Application: Marsh-Scott twist

Rearrange the \mathfrak{m}^{-1} formula, when μ is a (deg 1) matching to get

$$
\begin{equation*}
\mathrm{wt}(\mu)-\mathrm{wt}(G)=\sum_{a \in \mathfrak{d} \mu}\left[P_{h a}\right]-\mathfrak{m}^{-1}(\mu) \tag{*}
\end{equation*}
$$

Recall: [Ma-Sc] define a twist $\sigma_{\bullet}: \hat{\mathrm{G}}_{r_{k}}^{n} \rightarrow \hat{\mathrm{G}}_{k}^{n}$ and prove that

$$
\sigma_{\bullet}\left(\Delta_{J}\right)=\mathcal{Z}_{J}^{M S}:=z^{-\mathrm{wt}(G)} \sum_{\mu: \mathrm{d} \mu=J} z^{\mathrm{wt}(\mu)} \quad \text { in cluster coords }
$$

Define $\mathfrak{p}^{\bullet}: \mathbb{M}_{k} \rightarrow \mathbb{Z}^{Q_{0}}: J \mapsto \sum_{a \in J_{\bullet}}\left[P_{h a}\right]$.
Then $\mathfrak{d m p}^{\bullet}([M])=\left[P^{\bullet} M\right] \in \mathbb{M}_{k}$ for a projective cover $P^{\bullet} M \rightarrow M$.

$$
(*) \Rightarrow \quad \mathcal{Z}_{J}^{M S}=z^{\mathfrak{p}(J)} \sum_{\mu: \triangleright \mu=J} z^{-\mathfrak{m}^{-1}(\mu)}
$$

Thm [CKP] For $M(J)$ in CM C, we have $\sigma_{\bullet}\left(\Delta_{J}\right)=\Psi_{\Omega \bullet M(J)}$, where $\Omega^{\bullet} M$ is the syzygy $\operatorname{ker} P^{\bullet} M \rightarrow M$.

References

[JKS1] B.T. Jensen, A. King, X. Su, A categorification of Grassmannian cluster algebras, Proc. L.M.S. 113 (2016) 185-212 (arXiv:1309.7301)
[JKS2] B.T. Jensen, A. King, X. Su, Categorification and the quantum Grassmannian, arXiv:1904.07849
[Ma-Sc] R.J. Marsh, J. Scott, Twists of Plücker coordinates as dimer partition functions, Co. Math. Phys. 341 (2016) 821-884 (arXiv:1309.6630)
[Mu-Sp] G. Muller, D.E. Speyer, The twist for positroid varieties, Proc. L.M.S. 115 (2017) 1014-1071 (arXiv:1606.08383)
[Ri-Wi] K. Rietsch, L. Williams, Newton-Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians, Duke Math. J. 168 (2019) 3437-3527 (arXiv:1712.00447v2)

