August 6th, 2020

Spaces of quasiperiodic sequences

Greg Muller

• joint with Roi DoCampo

Central object of study

Spaces of quasiperiodic sequences and their moduli $QpGr(\pi)$.

Summary of results

To a reduced plabic graph with positroid π , we construct a map $\beta : (\mathbb{K}^{\times})^{\mathcal{F}} \longrightarrow \operatorname{QpGr}(\pi)$

This map is a toric chart in a (partial) Y-type cluster structure on $\operatorname{QpGr}(\pi)$ which makes it into the dual cluster variety to $\widehat{\operatorname{Gr}}(\pi)$.

Some general notation

- \mathbb{K} is a field, which we fix throughout.
- π is a positroid (or an equivalent combinatorial object).
- $Gr(\pi)$ is the corresponding (open) positroid variety.
- $\widehat{\mathrm{Gr}}(\pi)$ is the Plücker cone over $\mathrm{Gr}(\pi)$.

Quasiperiodic sequences and spaces

For us, a sequence is an element of $\mathbb{K}^{\mathbb{Z}}$; i.e. a bi-infinite list in \mathbb{K} .

Defn: A quasiperiodic sequence

A sequence v in $\mathbb{K}^{\mathbb{Z}}$ is **quasiperiodic** if there exists $n \in \mathbb{N}$ and $\lambda \in \mathbb{K}^{\times}$ such that $v_{a+n} = \lambda v_a$ for all a.

We write ' (n, λ) -quasiperiodic' when we want to fix n and λ .

Example: Three (4,2)-quasiperiodic sequences

	0	.5	5	-1	0	1	-1	-2	0	2	-2	-4	
	1.5	2.5	.5	-2	3	5	1	-4	6	10	2	-8	
• • •	1	.5	1.5	1	2	1	3	2	4	2	6	4	• • •

Defn: A quasiperiodic space

A subspace of $\mathbb{K}^{\mathbb{Z}}$ is **quasiperiodic** if there exists $n \in \mathbb{N}$ and $\lambda \in \mathbb{K}^{\times}$ such that every element is (n, λ) -quasiperiodic.

Examples

- The span of a quasiperiodic sequence.
- The space of solutions to the linear recurrence

$$x_i = x_{i-1} - x_{i-2} \qquad (\text{odd } i)$$

$$x_i = -x_{i-1} + 2x_{i-2}$$
 (even *i*)

Intuitively, (n, λ) -qp objects in $\mathbb{K}^{\mathbb{Z}}$ are equivalent to objects in \mathbb{K}^{n} .

Quasiperiodic extensions

- A vector in \mathbb{K}^n extends to a unique (n, λ) -qp sequence.
- A subspace of \mathbb{K}^n extends to a unique (n, λ) -qp space.

Example: The (4,2)-quasiperiodic extension of a vector in \mathbb{K}^4

$$(0 \ 1 \ -1 \ -2)$$

 $(\cdots 0 \ .5 \ -.5 \ -1 \ 0 \ 1 \ -1 \ -2 \ 0 \ 2 \ -2 \ -4 \cdots)$

So why is this interesting?

If we don't fix λ , a vector or subspace in \mathbb{K}^n has a one-parameter family of *n*-quasiperiodic extensions in $\mathbb{K}^{\mathbb{Z}}$.

Knutson-Lam-Speyer's juggling functions extend to qp-spaces.

Defn: The juggling function π of a quasiperiodic space V

For all $a \in \mathbb{Z}$, define $\pi(a)$ to be the smallest number in $[a, \infty)$ s.t.

 $\dim(V_{[a,\pi(a)]}) = \dim(V_{[a+1,\pi(a)]})$

Here, $V_{[a,b]}$ is the image of V under the projection $\mathbb{K}^{\mathbb{Z}} \to \mathbb{K}^{[a,b]}$.

...Wait, why juggling?

The map π describes a juggling pattern in which, at each moment $a \in \mathbb{Z}$, a juggler throws a ball that is later caught at moment $\pi(a)$.

Properties of juggling functions

Let π be the juggling function of an *n*-quasiperiodic space *V*.

- π is a bijection.
- $\pi(a+n) = \pi(a) + n$ for all a.
- $a \leq \pi(a) \leq a + n$ for all a.
- For any a,

dim
$$(V) = \frac{1}{n} \sum_{b=a}^{a+n-1} (\pi(b) - b)$$

This sum is called the number of balls of π .

Juggling functions \leftrightarrow Positroids

A function with these properties is also called a bounded affine permutation, and they are in canonical bijection with positroids.

Like KLS, we may use juggling functions to define a moduli space.

Defn: A quasiperiodic positroid variety

Given an *n*-periodic juggling function π , let $QpGr(\pi)$ denote the moduli space of *n*-quasiperiodic spaces with juggling function π .

This has the structure of an affine $\mathbb K\text{-variety},$ made explicit below.

Relation between $\operatorname{Gr}(\pi)$ and $\operatorname{QpGr}(\pi)$

There is an isomorphism of varieties

 $(\mathbb{K}^{\times}) \times \operatorname{Gr}(\pi) \xrightarrow{\sim} \operatorname{QpGr}(\pi)$

which sends (λ, V) to the (n, λ) -quasiperiodic extension of V.

Quasiperiodic spaces from plabic graphs

Consider a reduced plabic graph Γ in the disc with a clockwise indexing of its boundary vertices from 1 to n (considered mod n).

The 'rules of the road' define a juggling function $\pi : \mathbb{Z} \to \mathbb{Z}$ of Γ .

Throwing histories

Given a juggling function π and $a \in \mathbb{Z}$, define

$$T_{\mathsf{a}} := \{ b \in (-\infty, \mathsf{a}] \mid \pi(b) > \mathsf{a} \}$$

This records when the airborne balls after moment *a* were thrown.

The set $\{T_a \mid a \in \mathbb{Z}\}$ is the reverse Grassman necklace of π .

Lemma (M-Speyer)

A reduced plabic graph Γ with juggling function π admits a unique acyclic perfect orientation whose boundary sources are in T_a .

Let us call this the T_a -orientation of Γ .

Example: The T_2 -orientation

•
$$T_2 = \{-1, 1, 2\} \equiv \{1, 2, 5\}.$$

- The deviant edges of the perfect orientation are in red.
- This orientation is acyclic.
- There are no other perfect orientations with boundary sources *T*₂.

A face weighting of Γ assigns a weight $Y_f \in \mathbb{K}^{\times}$ to each face f.

The plan

Use a face weighting of Γ and the *n*-many T_a -orientations to construct a $\mathbb{Z} \times \mathbb{Z}$ -matrix whose kernel is a quasiperiodic space.

Defn: The recurrence matrix of boundary measurements

Given a face weighting Y of Γ , define a $\mathbb{Z} \times \mathbb{Z}$ -matrix C(Y) by

$$C(Y)_{a,b} := \left\{ \begin{array}{cc} (-1)^{\bullet} \sum_{p:b \to a} (\text{weight left of } p) & \text{if } b \leq a < b+n \\ 0 & \text{otherwise} \end{array} \right\}$$

where the sum is over paths from b to a in the $T_{(a-1)}$ -orientation.

Notice the orientation used depends on the endpoint of the path.

- We use $(-1)^{\bullet}$ to denote a sign we gloss over entirely.
- Exceptions are needed for boundary-adjacent leaves.

Example: Computing the entry $C(Y)_{4,3}$

$$\pi(a)=a+2$$

 $T_a=\{a-1,a\}$

Consider the three paths from 3 to 4 in the T_3 -orientation of this Γ .

To the left and right, the entries repeat 5-periodically.

Theorem (DoCampo-M)

The kernel of C(Y) is (n, λ) -quasiperiodic with juggling function π .

$$\lambda = (-1)^{\bullet} \prod_{f \in F} Y_f$$

Tools in the proof

• An analog of Gessel-Viennot-Lindström's Lemma:

$$det(C(Y)_{[a,b],[c,d]}) = (-1)^{\bullet} \sum_{P} \prod_{p \text{ in } P} (\text{weight to the left of } p)$$

where the sum runs over vertex-disjoint multipaths from [c, d] to [a, b] in the $T_{(a-1)}$ -orientation.

• A determinantal characterization of linear recurrences with quasiperiodic solutions.

This construction 'extends' the boundary measurement map.

Theorem (DoCampo-M)

Sending a face weighting to ker(C) defines an open embedding $\beta:(\mathbb{K}^{\times})^{\textit{F}} \hookrightarrow \operatorname{QpGr}(\pi)$

which fits into a commutative diagram

The monodromy map $(\mathbb{K}^{\mathcal{E}})/\text{Gauge} \hookrightarrow (\mathbb{K}^{\times})^{\mathcal{F}}$ weights each face by an alternating product of the weights of adjacent edges.

Tangent: Friezes

Recurrence matrices and friezes

If $\pi(a) = a + k$ for all *a* and every face has weight 1, then C(Y) is a tame SL_k -frieze (when rotated 45°).

For other π , we get an analog of friezes with a 'ragged lower edge'.

Friezes

A tame SL_k -frieze is an infinite strip of numbers (offset in a diamond pattern) such that

- the top and bottom rows consist of 1s,
- the determinant of any $k \times k$ diamond is 1, and
- the determinant of any $(k+1) \times (k+1)$ diamond is 0.

Tangent: Twists

Theorem (DoCampo-M)

The kernel of $C(Y)^{\top}$ is (n, λ^{-1}) -qp with juggling function π .

Every positroid variety has a left twist automorphism.

$$\overline{\tau}:\operatorname{Gr}(\pi)\to\operatorname{Gr}(\pi)$$

Theorem (DoCampo-M)

The left twist $\overline{\tau} : \operatorname{Gr}(\pi) \to \operatorname{Gr}(\pi)$ extends to a left twist $\overline{\tau} : \operatorname{QpGr}(\pi) \xrightarrow{\sim} \operatorname{QpGr}(\pi)$

The two quasiperiodic spaces associated to C(Y) are related by $\ker(\mathsf{C}(Y)^\top)=\overleftarrow{\tau}(\ker(\mathsf{C}(Y)))$

The cluster structure on $QpGr(\pi)$

Mutation of face weights

Given a plabic graph with a face weighting and a square face f, the mutation at f changes the graph and weights near f as follows.

This gives a rational map $(\mathbb{K}^{\times})^{F} \dashrightarrow (\mathbb{K}^{\times})^{F'}$ between face weights.

The operation on graphs is sometimes called urban renewal.

Mutation commutes with the respective β -maps

$$(\mathbb{K}^{\times})^{F} \leftarrow \cdots \rightarrow (\mathbb{K}^{\times})^{F'}$$

$$QpGr(\pi)$$

This extends a mutation relation for monodromy coordinates observed by Postnikov in his original paper (Section 12).

A quick overview of two flavors of cluster variety.

Cluster varieties

A cluster variety X is constructed by gluing together algebraic tori along rational maps defined by cluster mutation.

These are sometimes called 'X-type' cluster varieties/mutation to distinguish from the following variant.

Y-type cluster varieties

The toric charts in a cluster variety can be dualized and glued together along Y-type cluster mutation maps to construct a Y-type cluster variety which is dual to the original.

Y-type cluster mutations were introduced in separate contexts by Fock-Goncharov and Fomin-Zelevinsky.

Theorem (Scott, Postnikov, Leclerc, SSBW, Galashin-Lam)

For all π , $\widehat{\operatorname{Gr}}(\pi)$ is a(n X-type) cluster variety.

- Each plabic graph defines a cluster torus in $\widehat{\mathrm{Gr}}(\pi)$
- Urban renewal gives (X-type) mutation maps between tori.

Not every cluster torus in $\widehat{\mathrm{Gr}}(\pi)$ comes from a plabic graph!

The non-plabic clusters are quite mysterious and a serious roadblock to studying the cluster structure of $\widehat{\operatorname{Gr}}(\pi)$.

Y-type mutation from plabic graphs

Mutation of face weights at a square face f is the Y-type cluster mutation dual to an X-type cluster mutation in $\widehat{\operatorname{Gr}}(\pi)$.

Hence, $QpGr(\pi)$ has a 'partial' Y-type cluster structure dual to $\widehat{Gr}(\pi)$, in that it contains the duals of the plabic tori in $\widehat{Gr}(\pi)$.

Conjecture

This extends to a (complete) Y-type cluster structure on $QpGr(\pi)$ which makes it into the dual cluster variety to $\widehat{Gr}(\pi)$.

I.e. the duals to non-plabic tori should also embed into $QpGr(\pi)$.

Knowing part of a Y-type cluster structure is still enough to define a number of structures on $QpGr(\pi)$.

Consequences of (partial) Y-cluster structure on $QpGr(\pi)$

• There is a cluster ensemble map

$$\rho: \widehat{\mathrm{Gr}}(\pi) \longrightarrow \mathrm{QpGr}(\pi)$$

which restricts to a monomial map between each cluster torus and its dual. Here, ρ may be defined using the twist on $\widehat{\mathrm{Gr}}(\pi)$.

- β(ℝ^F₊) ⊂ QpGr(π, ℂ) does not depend on the choice of Γ, and gives a well-defined totally positive part.
- $QpGr(\pi)$ has a Poisson structure and a quantization.

The most important consequence of this duality is the Fock-Goncharov conjecture, as reformulated and proven by GHKK.

Parametrizing theta functions

Each tropical point of $QpGr(\pi)$ defines a theta function on $\widehat{Gr}(\pi)$. The theta functions collectively form a strongly positive basis for the coordinate ring of $\widehat{Gr}(\pi)$ containing the cluster monomials.

Application to representation theory

Since base affine space is a positroid variety, the theta basis in this case gives a distinguished basis of each simple SL_n -representation.

Big question

What are the tropical quasiperiodic spaces and what are the corresponding theta functions on positroid varieties?