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Central object of study

Spaces of quasiperiodic sequences and their moduli QpGr(π).

Summary of results

To a reduced plabic graph with positroid π, we construct a map

β : (K×)F −→ QpGr(π)

This map is a toric chart in a (partial) Y -type cluster structure on

QpGr(π) which makes it into the dual cluster variety to Ĝr(π).

Some general notation

• K is a field, which we fix throughout.

• π is a positroid (or an equivalent combinatorial object).

• Gr(π) is the corresponding (open) positroid variety.

• Ĝr(π) is the Plücker cone over Gr(π).
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Quasiperiodic sequences and spaces

For us, a sequence is an element of KZ; i.e. a bi-infinite list in K.

Defn: A quasiperiodic sequence

A sequence v in KZ is quasiperiodic if there exists n ∈ N and
λ ∈ K× such that va+n = λva for all a.

We write ‘(n, λ)-quasiperiodic’ when we want to fix n and λ.

Example: Three (4, 2)-quasiperiodic sequences

· · · 0 .5 −.5 −1 0 1 −1 −2 0 2 −2 −4 · · ·

· · · 1.5 2.5 .5 −2 3 5 1 −4 6 10 2 −8 · · ·

· · · 1 .5 1.5 1 2 1 3 2 4 2 6 4 · · ·
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Defn: A quasiperiodic space

A subspace of KZ is quasiperiodic if there exists n ∈ N and
λ ∈ K× such that every element is (n, λ)-quasiperiodic.

Examples

• The span of a quasiperiodic sequence.

• The space of solutions to the linear recurrence

xi = xi−1 − xi−2 (odd i)

xi = −xi−1 + 2xi−2 (even i)
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Intuitively, (n, λ)-qp objects in KZ are equivalent to objects in Kn.

Quasiperiodic extensions

• A vector in Kn extends to a unique (n, λ)-qp sequence.

• A subspace of Kn extends to a unique (n, λ)-qp space.

Example: The (4, 2)-quasiperiodic extension of a vector in K4

(0 1 −1 −2)

(· · · 0 .5 −.5 −1 0 1 −1 −2 0 2 −2 −4 · · · )

So why is this interesting?

If we don’t fix λ, a vector or subspace in Kn has a one-parameter
family of n-quasiperiodic extensions in KZ.
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Knutson-Lam-Speyer’s juggling functions extend to qp-spaces.

Defn: The juggling function π of a quasiperiodic space V

For all a ∈ Z, define π(a) to be the smallest number in [a,∞) s.t.

dim(V[a,π(a)]) = dim(V[a+1,π(a)])

Here, V[a,b] is the image of V under the projection KZ → K[a,b].

...Wait, why juggling?

The map π describes a juggling pattern in which, at each moment
a ∈ Z, a juggler throws a ball that is later caught at moment π(a).

· · · · · ·
· · · · · ·

· · ·
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Properties of juggling functions

Let π be the juggling function of an n-quasiperiodic space V .

• π is a bijection.

• π(a + n) = π(a) + n for all a.

• a ≤ π(a) ≤ a + n for all a.

• For any a,

dim(V ) =
1

n

a+n−1∑
b=a

(π(b)− b)

This sum is called the number of balls of π.

Juggling functions ↔ Positroids

A function with these properties is also called a bounded affine
permutation, and they are in canonical bijection with positroids.
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Like KLS, we may use juggling functions to define a moduli space.

Defn: A quasiperiodic positroid variety

Given an n-periodic juggling function π, let QpGr(π) denote the
moduli space of n-quasiperiodic spaces with juggling function π.

This has the structure of an affine K-variety, made explicit below.

Relation between Gr(π) and QpGr(π)

There is an isomorphism of varieties

(K×)×Gr(π)
∼−→ QpGr(π)

which sends (λ,V ) to the (n, λ)-quasiperiodic extension of V .
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Quasiperiodic spaces from plabic graphs

Consider a reduced plabic graph Γ in the disc with a clockwise
indexing of its boundary vertices from 1 to n (considered mod n).

1

2 3

4

56

The ‘rules of the road’ define a juggling function π : Z→ Z of Γ.
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Throwing histories

Given a juggling function π and a ∈ Z, define

Ta := {b ∈ (−∞, a] | π(b) > a}

This records when the airborne balls after moment a were thrown.

1 3 4 6
· · · · · ·

· · · · · ·

· · ·

Moment 6.5

The set {Ta | a ∈ Z} is the reverse Grassman necklace of π.
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Lemma (M-Speyer)

A reduced plabic graph Γ with juggling function π admits a unique
acyclic perfect orientation whose boundary sources are in Ta.

Let us call this the Ta-orientation of Γ.

Example: The T2-orientation

1

2 3

4

56

• T2 = {−1, 1, 2} ≡ {1, 2, 5}.
• The deviant edges of the

perfect orientation are in red.

• This orientation is acyclic.

• There are no other perfect
orientations with boundary
sources T2.
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A face weighting of Γ assigns a weight Yf ∈ K× to each face f .

1

2 3

4

56

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

Y9

The plan

Use a face weighting of Γ and the n-many Ta-orientations to
construct a Z× Z-matrix whose kernel is a quasiperiodic space.
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Defn: The recurrence matrix of boundary measurements

Given a face weighting Y of Γ, define a Z× Z-matrix C(Y ) by

C(Y )a,b :=

 (−1)•
∑

p:b→a

(weight left of p) if b ≤ a < b + n

0 otherwise


where the sum is over paths from b to a in the T(a−1)-orientation.

Notice the orientation used depends on the endpoint of the path.

• We use (−1)• to denote a sign we gloss over entirely.

• Exceptions are needed for boundary-adjacent leaves.
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Example: Computing the entry C(Y )4,3

1

2

3

4

5

Y1

Y2Y3

Y4

Y5

Y6 Y7

π(a) = a + 2

Ta = {a− 1, a}

Consider the three paths from 3 to 4 in the T3-orientation of this Γ.

1

2

3

4

5

Y1

Y2Y3

Y4

Y5

Y6 Y7

1

2

3

4

5

Y1

Y2Y3

Y4

Y5

Y6 Y7

1

2

3

4

5

Y1

Y2Y3

Y4

Y5

Y6 Y7

C(Y )4,3 := Y3 + Y3Y6 + Y3Y6Y7
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Example: The matrix C(Y )

1

2

3

4

5

Y1

Y2Y3

Y4

Y5

Y6 Y7

To fit C(Y ) on a slide, we rotate it by 45◦ and delete the 0s:

· · · 1 1 1 1 1 · · ·

· · · Y1(1 + Y7) Y2 Y3(1 + Y6 + Y6Y7) Y4 Y5(1 + Y6) · · ·

· · · Y1Y5Y7 Y1Y2 Y2Y3Y6Y7 Y3Y4 Y4Y5Y6 · · ·




To the left and right, the entries repeat 5-periodically.



Quasiperiodicity Plabic graphs Cluster structures

Example: The matrix C(Y )

This may be more clear with explicit face weights.

1

2

3

4

5

1

23

4
5

6 7

· · · 1 1 1 1 1 1 1 1 1 · · ·
· · · 4 35 8 1 147 4 35 8 1 · · ·

· · · 12 120 35 2 252 12 120 35 2 · · ·
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Theorem (DoCampo-M)

The kernel of C(Y ) is (n, λ)-quasiperiodic with juggling function π.

λ = (−1)•
∏
f ∈F

Yf

Tools in the proof

• An analog of Gessel-Viennot-Lindström’s Lemma:

det(C(Y )[a,b],[c,d ]) = (−1)•
∑
P

∏
p in P

(weight to the left of p)

where the sum runs over vertex-disjoint multipaths from [c , d ]
to [a, b] in the T(a−1)-orientation.

• A determinantal characterization of linear recurrences with
quasiperiodic solutions.
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This construction ‘extends’ the boundary measurement map.

Theorem (DoCampo-M)

Sending a face weighting to ker(C) defines an open embedding

β : (K×)F ↪→ QpGr(π)

which fits into a commutative diagram

(K×)E/Gauge (K×)F

Gr(π) QpGr(π)

Monodromy

Boundary
Meas. Map β

(±1)-qp-extension

The monodromy map (KE )/Gauge ↪→ (K×)F weights each face
by an alternating product of the weights of adjacent edges.
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Tangent: Friezes

Recurrence matrices and friezes

If π(a) = a + k for all a and every face has weight 1, then C(Y ) is
a tame SLk -frieze (when rotated 45◦).

For other π, we get an analog of friezes with a ‘ragged lower edge’.

Friezes

A tame SLk -frieze is an infinite strip of numbers (offset in a
diamond pattern) such that

• the top and bottom rows consist of 1s,

• the determinant of any k × k diamond is 1, and

• the determinant of any (k + 1)× (k + 1) diamond is 0.
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Tangent: Twists

Theorem (DoCampo-M)

The kernel of C(Y )> is (n, λ−1)-qp with juggling function π.

Every positroid variety has a left twist automorphism.

~τ : Gr(π)→ Gr(π)

Theorem (DoCampo-M)

The left twist ~τ : Gr(π)→ Gr(π) extends to a left twist

~τ : QpGr(π)
∼−→ QpGr(π)

The two quasiperiodic spaces associated to C(Y ) are related by

ker(C(Y )>) = ~τ(ker(C(Y )))
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The cluster structure on QpGr(π)

Mutation of face weights

Given a plabic graph with a face weighting and a square face f ,
the mutation at f changes the graph and weights near f as follows.

YfYa

Yb

Yc

Yd

µf
Y−1
f

Ya

1+Y
−1
f

Yb(1 + Yf )

Yc

1+Y
−1
f

Yd (1 + Yf )

This gives a rational map (K×)F 99K (K×)F
′

between face weights.

The operation on graphs is sometimes called urban renewal.
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Mutation commutes with the respective β-maps

(K×)F (K×)F
′

QpGr(π)

µf

This extends a mutation relation for monodromy coordinates
observed by Postnikov in his original paper (Section 12).
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A quick overview of two flavors of cluster variety.

Cluster varieties

A cluster variety X is constructed by gluing together algebraic tori
along rational maps defined by cluster mutation.

These are sometimes called ‘X-type’ cluster varieties/mutation to
distinguish from the following variant.

Y-type cluster varieties

The toric charts in a cluster variety can be dualized and glued
together along Y-type cluster mutation maps to construct a Y-type
cluster variety which is dual to the original.

Y-type cluster mutations were introduced in separate contexts by
Fock-Goncharov and Fomin-Zelevinsky.
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Theorem (Scott, Postnikov, Leclerc, SSBW, Galashin-Lam)

For all π, Ĝr(π) is a(n X-type) cluster variety.

• Each plabic graph defines a cluster torus in Ĝr(π)

• Urban renewal gives (X-type) mutation maps between tori.

Not every cluster torus in Ĝr(π) comes from a plabic graph!

The non-plabic clusters are quite mysterious and a serious
roadblock to studying the cluster structure of Ĝr(π).
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Y-type mutation from plabic graphs

Mutation of face weights at a square face f is the Y-type cluster
mutation dual to an X-type cluster mutation in Ĝr(π).

Hence, QpGr(π) has a ‘partial’ Y-type cluster structure dual to

Ĝr(π), in that it contains the duals of the plabic tori in Ĝr(π).

Conjecture

This extends to a (complete) Y-type cluster structure on QpGr(π)

which makes it into the dual cluster variety to Ĝr(π).

I.e. the duals to non-plabic tori should also embed into QpGr(π).
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Knowing part of a Y -type cluster structure is still enough to define
a number of structures on QpGr(π).

Consequences of (partial) Y-cluster structure on QpGr(π)

• There is a cluster ensemble map

ρ : Ĝr(π) −→ QpGr(π)

which restricts to a monomial map between each cluster torus
and its dual. Here, ρ may be defined using the twist on Ĝr(π).

• β(RF
+) ⊂ QpGr(π,C) does not depend on the choice of Γ,

and gives a well-defined totally positive part.

• QpGr(π) has a Poisson structure and a quantization.
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The most important consequence of this duality is the
Fock-Goncharov conjecture, as reformulated and proven by GHKK.

Parametrizing theta functions

Each tropical point of QpGr(π) defines a theta function on Ĝr(π).
The theta functions collectively form a strongly positive basis for
the coordinate ring of Ĝr(π) containing the cluster monomials.

Application to representation theory

Since base affine space is a positroid variety, the theta basis in this
case gives a distinguished basis of each simple SLn-representation.

Big question

What are the tropical quasiperiodic spaces and what are the
corresponding theta functions on positroid varieties?
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