From dimers in the disc to cluster categories arXiv:1912.12475 and work in progress with İ. Çanakçı and A. King

Matthew Pressland

University of Leeds

Dimers in Combinatorics and Cluster Algebras University of Michigan

Dimer models

We begin with a dimer model D (a bipartite plabic graph) in the disc.

The dimer model should be consistent, meaning that this strands obtained by following the rules of the road form a Postnikov diagram.

The only non-automatic condition here is that strands which cross twice should be oppositely oriented between these crossings—this also rules out closed strands in the interior.

The dimer model has a chirality $k = (k_{\bullet}, k_{\circ})$ with $k_{\bullet} + k_{\circ} = n$, the number of boundary marked points, and a permutation σ_D of these points.

This data determines a number of further geometric and algebraic objects, which we will explore.

Dimer models

We begin with a dimer model D (a bipartite plabic graph) in the disc.

The dimer model should be consistent, meaning that this strands obtained by following the rules of the road form a Postnikov diagram.

The only non-automatic condition here is that strands which cross twice should be

oppositely oriented between these crossings—this also rules out closed strands in the interior.

The dimer model has a chirality $k = (k_{\bullet}, k_{\circ})$ with $k_{\bullet} + k_{\circ} = n$, the number of boundary marked points, and a permutation σ_D of these points.

This data determines a number of further geometric and algebraic objects, which we will explore.

The dimer model D cuts the disk into regions, and thus determines a quiver Q_D with

 $\left(Q_{0} \right)$ vertices corresponding to the regions

 (Q_1) arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary—marked in blue and called *frozen*—sometimes play a different role to the others.

The dimer model D cuts the disk into regions, and thus determines a quiver Q_D with

 $\left(Q_{0} \right)$ vertices corresponding to the regions

 (Q_1) arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary—marked in blue and called *frozen*—sometimes play a different role to the others.

The dimer model D cuts the disk into regions, and thus determines a quiver Q_D with

 $\left(Q_{0} \right)$ vertices corresponding to the regions

 (Q_1) arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary—marked in blue and called *frozen*—sometimes play a different role to the others.

The dimer model D cuts the disk into regions, and thus determines a quiver Q_D with

 $\left(Q_{0} \right)$ vertices corresponding to the regions

 (Q_1) arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary—marked in blue and called *frozen*—sometimes play a different role to the others.

A cluster algebra

The permutation σ_D is a Grassmann permutation, and hence determines a particular open *positroid* subvariety $\Pi(\sigma_D) \subseteq \operatorname{Gr}_{k_{\bullet}}^n$ of the Grassmannian of k_{\bullet} -dimensional subspaces of \mathbb{C}^n [Postnikov].

It also determines a cluster algebra \mathscr{A}_D , with invertible frozen variables, via the quiver Q_D .

Theorem (Serhiyenko-Sherman-Bennett-Williams, Galashin-Lam)

There is an isomorphism $\mathscr{A}_D \xrightarrow{\sim} \mathbb{C}[\Pi(\sigma_D)]$, mapping the initial cluster variables to restrictions of Plücker coordinates.

For $\sigma_D: i \mapsto i + k_{\circ} \mod n$ (the uniform permutation), the variety $\Pi(\sigma_D)$ is dense in $\operatorname{Gr}_{k_{\bullet}}^n$, and the cluster algebra with non-invertible frozen variables attached to Q_D is isomorphic to the homogeneous coordinate ring $\mathbb{C}[\widehat{\operatorname{Gr}}_{k_{\bullet}}^n]$. [Scott]

In this case, Jensen-King-Su have categorified the cluster algebra—our aim is to extend this to more general positroid varieties.

A non-commutative algebra

The dimer model D gives Q_D a determined set of \bullet -cycles and \circ -cycles (bounding faces).

Thus, letting $Z = \mathbb{C}[[t]]$, we can consider matrix factorisations on Q_D : representations with free Z-modules at each vertex, all having the same fixed rank, and in which each \bullet - and \circ -cycle

acts by t. (When the rank is 1, these are given by perfect matchings.)

When D is connected as a graph (equivalently $|Q_D|$ is a topological disc) these are precisely the A_D -modules free over Z, where A_D is the \mathbb{C} -algebra determined by the following relations on Q:

Each non-boundary (green) arrow a can be completed to either a \bullet -cycle or a \circ -cycle by unique paths p_a^{\bullet} and p_a° ; we impose each relation $p_a^{\bullet} = p_a^{\circ}$.

This is an example of a *frozen Jacobian algebra*, for the potential $W = \sum (\bullet\text{-cycles}) - \sum (\circ\text{-cycles}).$

A non-commutative algebra

The dimer model D gives Q_D a determined set of \bullet -cycles and \circ -cycles (bounding faces).

Thus, letting $Z = \mathbb{C}[[t]]$, we can consider matrix factorisations on Q_D : representations with free Z-modules at each vertex, all having the same fixed rank, and in which each \bullet - and \circ -cycle

acts by t. (When the rank is 1, these are given by perfect matchings.)

When D is connected as a graph (equivalently $|Q_D|$ is a topological disc) these are precisely the A_D -modules free over Z, where A_D is the \mathbb{C} -algebra determined by the following relations on Q:

Each non-boundary (green) arrow a can be completed to either a \bullet -cycle or a \circ -cycle by unique paths p_a^{\bullet} and p_a° ; we impose each relation $p_a^{\bullet} = p_a^{\circ}$.

This is an example of a *frozen Jacobian algebra*, for the potential $W = \sum (\bullet-\text{cycles}) - \sum (\circ-\text{cycles}).$

The boundary algebra

Let $e = e^2 \in A_D$ be the sum of vertex idempotents at boundary vertices, and write $B_D = eA_De$ for the *boundary algebra*.

Theorem (Jensen-King-Su, Baur-King-Marsh)

When σ_D is the uniform permutation, the category

 $\operatorname{GP}(B_D) = \{X \in \operatorname{mod} B_D : \operatorname{Ext}_{B_D}^{>0}(X, B_D) = 0\}$

categorifies the cluster algebra \mathscr{A}_D .

Note: this presentation is historically backwards. In practice, Jensen–King–Su proved the above theorem for an explicitly defined 'circle algebra' C_k , depending only on the chirality, which Baur–King–Marsh (slightly) later showed is isomorphic to B_D whenever σ_D is the uniform permutation.

With hindsight, we can try to repeat this trick, this time using the boundary algebra description of B_D as the (now more general) definition.

Categorification

Theorem

Let D be a connected consistent dimer model in the disc, with dimer algebra $A = A_D$ and boundary algebra $B = B_D$. Then

- (1) *B* is Iwanaga–Gorenstein of Gorenstein dimension ≤ 3 ; that is, *B* is Noetherian and injdim $_BB$, injdim $B_B \leq 3$. In particular GP(*B*) is a **Frobenius** category.
- (2) The stable category $\underline{GP}(B) = GP(B)/\operatorname{proj} B$ is a 2-Calabi–Yau triangulated category.
- (3) $A = \operatorname{End}_B(eA)^{\operatorname{op}}$ and $eA \in \operatorname{GP}(B)$ is cluster-tilting, that is

 $\operatorname{add}(eA) = \{ X \in \operatorname{GP}(B) : \operatorname{Ext}^1_B(X, eA) = 0 \}.$

This theorem follows from the following facts about the pair (A, e):

- (1) A is Noetherian,
- (2) A/AeA is finite-dimensional, and
- (3) A is internally bimodule 3-Calabi–Yau with respect to e.

Internally Calabi–Yau algebras

The definition of A being internally bimodule 3-Calabi–Yau algebra is technical, and we omit it, but it implies that ${\rm gl.\,dim}\,A\leqslant 3$ and that

$$\operatorname{Ext}_{A}^{i}(X,Y) = \operatorname{Ext}_{A}^{3-i}(Y,X)^{*}$$

for $X, Y \in \text{mod } A$ with eY = 0.

The result is analogous to Broomhead's theorem that a consistent dimer model on the torus is bimodule 3-Calabi–Yau in the usual (no boundary) sense.

The proof that A_D has this property uses that it is a frozen Jacobian algebra—hence the restriction to D connected—and the thinness property $(e_iAe_j \cong Z)$ obtained with Çanakçı and King (which also implies the required Noetherianity / finite-dimensionality).

Warning

When σ_D is the uniform permutation, $GP(B_D) = CM(B_D)$, i.e. it consists of those B_D -modules free and finitely generated over Z. In general, $GP(B_D)$ is a proper full subcategory of $CM(B_D)$.

Relationship to the JKS category

Proposition (Çanakçı–King–P)

For D of chirality k, there is a fully faithful functor $CM(B_D) \rightarrow CM(C_k)$, recalling that C_k is JKS's circle algebra for the uniform permutation.

The cluster-tilting object $eA_D \in GP(B_D)$ is sent to to a direct sum of rank 1 (Plücker) modules M_J , for the labels J attached to alternating regions of the Postnikov diagram of D by labelling regions using the sources of strands.

The functor in the first statement arises from a natural map $C_k \rightarrow B_D$ (not surjective in general).

The second statement follows from the fact that restricting the projective A_D -module at vertex i to B_D and then to C_k produces the rank 1 module M_J , for J is obtained by the given rule.

What of target labelling? By duality there is another Frobenius category $\operatorname{GI}(B_D) \subset \operatorname{CM}(B_D)$ containing the cluster tilting object $\operatorname{Hom}_Z(A_De, Z)$, which restricts to the direct sum of the rank 1 modules coming from this labelling rule.

Example

In the running example, $GP(B_D)$ is (inside $CM(C_k)$) as shown:

Application to twists with I. Çanakçı + A. King

Fix D consistent and connected, and write $A = A_D$, $B = B_D$, $F = \text{Hom}_B(eA, -)$, and $G = \text{Ext}_B^1(eA, -)$.

To $X \in CM(B)$ we attach the Laurent polynomial

$$\Phi_X = x^{[FX]} \sum_{E \leqslant GX} x^{-[E]}$$

where [M] is the class of M in $K_0(A)$ (written in the basis of indecomposable projectives), and infinite sums are computed using Euler characteristics of quiver Grassmannians. This is the CC-formula, computing cluster monomials from rigid objects.

If $PX \to X$ is a projective cover with kernel ΩX , there is an exact sequence

$$FPX \to FX \to G\Omega X \to 0,$$

and we write F'X for the image of the left-hand map. Then

$$\Phi_{\Omega X} = x^{[FPX]} \sum_{F' X \leqslant N \leqslant F X} x^{-[N]}$$

Application to twists with I. Çanakçı + A. King

$$\Phi_{\Omega X} = x^{[FPX]} \sum_{F' X \leqslant N \leqslant FX} x^{-[N]}$$

Proposition (Çanakçı–King–P)

Consider $X = M_J$ (i.e. $X \in CM(B)$ restricts to this C_k -module). Then $\{F'M_J \leq N \leq FM_J\}$ is the set of perfect matching modules N_μ for matchings μ of D with $\partial \mu = J$.

This result uses the categorification theorem, specifically that FB = eA and GB = 0.

It allows us to compare the CC-formula to the Marsh–Scott formula

$$MS(J) = x^{-\operatorname{wt}(D)} \sum_{\mu:\partial\mu=J} x^{\operatorname{wt}(\mu)}$$

where wt(D) and $wt(\mu)$ are combinatorially defined weights in $K_0(A)$.

Application to twists with I. Çanakçı + A. King

$$\Phi_{\Omega X} = x^{[FPX]} \sum_{F'X \leqslant N \leqslant FX} x^{-[N]} \qquad \mathrm{MS}(J) = x^{-\operatorname{wt}(D)} \sum_{\mu:\partial\mu=J} x^{\operatorname{wt}(\mu)}$$

Theorem (Çanakçı–King–P)

For $M_J \in CM(B)$, there is a canonical choice of projective cover $\mathbf{P}M_J \rightarrow M_J$, inducing a canonical syzygy $\mathbf{\Omega}M_J$, for which

 $\Phi_{\mathbf{\Omega}M_J} = \mathrm{MS}(J).$

Under a suitable specialisation of the x_i to Plücker coordinates, taking Φ_{M_J} to the Plücker coordinate Δ_J , the Laurent polynomial MS(J) evaluates to the Marsh–Scott twist of Δ_J . That is, Ω categorifies this twist.

The theorem is proved by computing a projective resolution of each perfect matching A-module N_{μ} , from which it follows that $[F\mathbf{P}M_J] - [N_{\mu}] = \operatorname{wt}(\mu) - \operatorname{wt}(D)$ for each perfect matching μ with $\partial \mu = J$.

Thanks for listening!

