From dimers in the disc to cluster categories arXiv:1912.12475
 and work in progress with İ. Çanakçı and A. King

Matthew Pressland

University of Leeds
Dimers in Combinatorics and Cluster Algebras
University of Michigan

Dimer models

We begin with a dimer model D (a bipartite plabic graph) in the disc.

The dimer model should be consistent, meaning that this strands obtained by following the rules of the road form a Postnikov diagram.
The only non-automatic condition here is that strands which cross twice should be
 oppositely oriented between these crossings-this also rules out closed strands in the interior.
The dimer model has a chirality $k=\left(k_{\bullet}, k_{\circ}\right)$ with $k_{\bullet}+k_{\circ}=n$, the number of boundary marked points, and a permutation σ_{D} of these points.
This data determines a number of further geometric and algebraic objects, which we will explore.

Dimer models

We begin with a dimer model D (a bipartite plabic graph) in the disc.

The dimer model should be consistent, meaning that this strands obtained by following the rules of the road form a Postnikov diagram.
The only non-automatic condition here is that strands which cross twice should be
 oppositely oriented between these crossings-this also rules out closed strands in the interior.
The dimer model has a chirality $k=\left(k_{\bullet}, k_{\circ}\right)$ with $k_{\bullet}+k_{\circ}=n$, the number of boundary marked points, and a permutation σ_{D} of these points.

This data determines a number of further geometric and algebraic objects, which we will explore.

The quiver

The dimer model D cuts the disk into regions, and thus determines a quiver Q_{D} with
$\left(Q_{0}\right)$ vertices corresponding to the regions
$\left(Q_{1}\right)$ arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary-marked in blue and called frozen-sometimes play a different role to the others.

In the Postnikov diagram, the vertices correspond to alternating regions, and the arrows to crossings, with their natural orientation.

The quiver

The dimer model D cuts the disk into regions, and thus determines a quiver Q_{D} with
$\left(Q_{0}\right)$ vertices corresponding to the regions
$\left(Q_{1}\right)$ arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary-marked in blue and called frozen-sometimes play a different role to the others.

In the Postnikov diagram, the vertices correspond to alternating regions, and the arrows to crossings, with their natural orientation.

The quiver

The dimer model D cuts the disk into regions, and thus determines a quiver Q_{D} with
$\left(Q_{0}\right)$ vertices corresponding to the regions
$\left(Q_{1}\right)$ arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary-marked in blue and called frozen-sometimes play a different role to the others.

In the Postnikov diagram, the vertices correspond to alternating regions, and the arrows to crossings, with their natural orientation.

The quiver

The dimer model D cuts the disk into regions, and thus determines a quiver Q_{D} with
$\left(Q_{0}\right)$ vertices corresponding to the regions
$\left(Q_{1}\right)$ arrows corresponding to edges, oriented with the black vertex on the left.

The vertices and arrows on the boundary-marked in blue and called frozen-sometimes play a different role to the others.

In the Postnikov diagram, the vertices correspond to alternating regions, and the arrows to crossings, with their natural orientation.

A cluster algebra

The permutation σ_{D} is a Grassmann permutation, and hence determines a particular open positroid subvariety $\Pi\left(\sigma_{D}\right) \subseteq \operatorname{Gr}_{k \text { 。 }}^{n}$ of the Grassmannian of k_{\bullet}-dimensional subspaces of \mathbb{C}^{n} [Postnikov].

It also determines a cluster algebra \mathscr{A}_{D}, with invertible frozen variables, via the quiver Q_{D}.

Theorem (Serhiyenko-Sherman-Bennett-Williams, Galashin-Lam)

There is an isomorphism $\mathscr{A}_{D} \xrightarrow{\sim} \mathbb{C}\left[\Pi\left(\sigma_{D}\right)\right]$, mapping the initial cluster variables to restrictions of Plücker coordinates.

For $\sigma_{D}: i \mapsto i+k_{\circ} \bmod n$ (the uniform permutation), the variety $\Pi\left(\sigma_{D}\right)$ is dense in $\mathrm{Gr}_{k_{\bullet}}^{n}$, and the cluster algebra with non-invertible frozen variables attached to Q_{D} is isomorphic to the homogeneous coordinate ring $\mathbb{C}\left[\widehat{\mathrm{Gr}}_{k \text {. }}^{n}\right]$. [Scott]

In this case, Jensen-King-Su have categorified the cluster algebra-our aim is to extend this to more general positroid varieties.

A non-commutative algebra

The dimer model D gives Q_{D} a determined set of \bullet-cycles and o-cycles (bounding faces).

Thus, letting $Z=\mathbb{C}[[t]]$, we can consider matrix factorisations on Q_{D} : representations with free Z-modules at each vertex, all having the same fixed rank, and in which each •- and o-cycle
 acts by t. (When the rank is 1 , these are given by perfect matchings.)
When D is connected as a graph (equivalently $\left|Q_{D}\right|$ is a topological disc) these are precisely the A_{D}-modules free over Z, where A_{D} is the \mathbb{C}-algebra determined by the following relations on Q :

Each non-boundary (green) arrow a can be completed to either a \bullet-cycle or a o-cycle by unique paths p_{a}^{\bullet} and p_{a}°; we impose each relation $p_{a}^{\bullet}=p_{a}^{\circ}$.

This is an example of a frozen Jacobian algebra, for the potential $W=\sum(\bullet$-cycles $)-\sum$ (o-cycles).

A non-commutative algebra

The dimer model D gives Q_{D} a determined set of \bullet-cycles and o-cycles (bounding faces).

Thus, letting $Z=\mathbb{C}[[t]]$, we can consider matrix factorisations on Q_{D} : representations with free Z-modules at each vertex, all having the same fixed rank, and in which each •- and o-cycle
 acts by t. (When the rank is 1 , these are given by perfect matchings.)
When D is connected as a graph (equivalently $\left|Q_{D}\right|$ is a topological disc) these are precisely the A_{D}-modules free over Z, where A_{D} is the \mathbb{C}-algebra determined by the following relations on Q :

Each non-boundary (green) arrow a can be completed to either a \bullet-cycle or a o-cycle by unique paths p_{a}^{\bullet} and p_{a}°; we impose each relation $p_{a}^{\bullet}=p_{a}^{\circ}$.

This is an example of a frozen Jacobian algebra, for the potential $W=\sum(\bullet$-cycles $)-\sum$ (o-cycles).

The boundary algebra

Let $e=e^{2} \in A_{D}$ be the sum of vertex idempotents at boundary vertices, and write $B_{D}=e A_{D} e$ for the boundary algebra.

Theorem (Jensen-King-Su, Baur-King-Marsh)

When σ_{D} is the uniform permutation, the category

$$
\operatorname{GP}\left(B_{D}\right)=\left\{X \in \bmod B_{D}: \operatorname{Ext}_{B_{D}}^{>0}\left(X, B_{D}\right)=0\right\}
$$

categorifies the cluster algebra \mathscr{A}_{D}.

Note: this presentation is historically backwards. In practice, Jensen-King-Su proved the above theorem for an explicitly defined 'circle algebra' C_{k}, depending only on the chirality, which Baur-King-Marsh (slightly) later showed is isomorphic to B_{D} whenever σ_{D} is the uniform permutation.

With hindsight, we can try to repeat this trick, this time using the boundary algebra description of B_{D} as the (now more general) definition.

Categorification

Theorem

Let D be a connected consistent dimer model in the disc, with dimer algebra $A=A_{D}$ and boundary algebra $B=B_{D}$. Then
(1) B is Iwanaga-Gorenstein of Gorenstein dimension $\leqslant 3$; that is, B is Noetherian and $\operatorname{injdim}_{B} B$, injdim $B_{B} \leqslant 3$. In particular $\operatorname{GP}(B)$ is a Frobenius category.
(2) The stable category $\underline{\mathrm{GP}}(B)=\mathrm{GP}(B) / \operatorname{proj} B$ is a 2-Calabi-Yau triangulated category.
(3) $A=\operatorname{End}_{B}(e A)^{\mathrm{op}}$ and $e A \in \operatorname{GP}(B)$ is cluster-tilting, that is

$$
\operatorname{add}(e A)=\left\{X \in \operatorname{GP}(B): \operatorname{Ext}_{B}^{1}(X, e A)=0\right\} .
$$

This theorem follows from the following facts about the pair (A, e) :
(1) A is Noetherian,
(2) $A / A e A$ is finite-dimensional, and
(3) A is internally bimodule 3 -Calabi-Yau with respect to e.

Internally Calabi-Yau algebras

The definition of A being internally bimodule 3-Calabi-Yau algebra is technical, and we omit it, but it implies that $\mathrm{gl} . \operatorname{dim} A \leqslant 3$ and that

$$
\operatorname{Ext}_{A}^{i}(X, Y)=\operatorname{Ext}_{A}^{3-i}(Y, X)^{*}
$$

for $X, Y \in \bmod A$ with $e Y=0$.
The result is analogous to Broomhead's theorem that a consistent dimer model on the torus is bimodule 3-Calabi-Yau in the usual (no boundary) sense.

The proof that A_{D} has this property uses that it is a frozen Jacobian algebra-hence the restriction to D connected-and the thinness property ($e_{i} A e_{j} \cong Z$) obtained with Çanakçı and King (which also implies the required Noetherianity / finite-dimensionality).

Warning

When σ_{D} is the uniform permutation, $\operatorname{GP}\left(B_{D}\right)=\operatorname{CM}\left(B_{D}\right)$, i.e. it consists of those B_{D}-modules free and finitely generated over Z. In general, $\operatorname{GP}\left(B_{D}\right)$ is a proper full subcategory of $\mathrm{CM}\left(B_{D}\right)$.

Relationship to the JKS category

Proposition (Çanakçı-King-P)

For D of chirality k, there is a fully faithful functor $\mathrm{CM}\left(B_{D}\right) \rightarrow \mathrm{CM}\left(C_{k}\right)$, recalling that C_{k} is JKS's circle algebra for the uniform permutation.

The cluster-tilting object e $A_{D} \in \operatorname{GP}\left(B_{D}\right)$ is sent to to a direct sum of rank 1 (Plücker) modules M_{J}, for the labels J attached to alternating regions of the Postnikov diagram of D by labelling regions using the sources of strands.

The functor in the first statement arises from a natural map $C_{k} \rightarrow B_{D}$ (not surjective in general).

The second statement follows from the fact that restricting the projective A_{D}-module at vertex i to B_{D} and then to C_{k} produces the rank 1 module M_{J}, for J is obtained by the given rule.

What of target labelling? By duality there is another Frobenius category $\mathrm{GI}\left(B_{D}\right) \subset \mathrm{CM}\left(B_{D}\right)$ containing the cluster tilting object $\operatorname{Hom}_{Z}\left(A_{D} e, Z\right)$, which restricts to the direct sum of the rank 1 modules coming from this labelling rule.

Example

In the running example, $\operatorname{GP}\left(B_{D}\right)$ is (inside $\operatorname{CM}\left(C_{k}\right)$) as shown:

Application to twists with i. Çanakçı + A. King

Fix D consistent and connected, and write $A=A_{D}, B=B_{D}$, $F=\operatorname{Hom}_{B}(e A,-)$, and $G=\operatorname{Ext}_{B}^{1}(e A,-)$.
To $X \in \operatorname{CM}(B)$ we attach the Laurent polynomial

$$
\Phi_{X}=x^{[F X]} \sum_{E \leqslant G X} x^{-[E]}
$$

where [M] is the class of M in $\mathrm{K}_{0}(A)$ (written in the basis of indecomposable projectives), and infinite sums are computed using Euler characteristics of quiver Grassmannians. This is the CC-formula, computing cluster monomials from rigid objects.
If $P X \rightarrow X$ is a projective cover with kernel ΩX, there is an exact sequence

$$
F P X \rightarrow F X \rightarrow G \Omega X \rightarrow 0
$$

and we write $F^{\prime} X$ for the image of the left-hand map. Then

$$
\Phi_{\Omega X}=x^{[F P X]} \sum_{F^{\prime} X \leqslant N \leqslant F X} x^{-[N]}
$$

Application to twists with i. Çanakçı + A. King

$$
\Phi_{\Omega X}=x^{[F P X]} \sum_{F^{\prime} X \leqslant N \leqslant F X} x^{-[N]}
$$

Proposition (Çanakçı-King-P)

Consider $X=M_{J}$ (i.e. $X \in \mathrm{CM}(B)$ restricts to this C_{k}-module). Then $\left\{F^{\prime} M_{J} \leqslant N \leqslant F M_{J}\right\}$ is the set of perfect matching modules N_{μ} for matchings μ of D with $\partial \mu=J$.

This result uses the categorification theorem, specifically that $F B=e A$ and $G B=0$.

It allows us to compare the CC-formula to the Marsh-Scott formula

$$
\operatorname{MS}(J)=x^{-\mathrm{wt}(D)} \sum_{\mu: \partial \mu=J} x^{\operatorname{wt}(\mu)}
$$

where $\mathrm{wt}(D)$ and $\mathrm{wt}(\mu)$ are combinatorially defined weights in $\mathrm{K}_{0}(A)$.

Application to twists with i. Çanakç + A. King

$$
\Phi_{\Omega X}=x^{[F P X]} \sum_{F^{\prime} X \leqslant N \leqslant F X} x^{-[N]} \quad \operatorname{MS}(J)=x^{-\mathrm{wt}(D)} \sum_{\mu: \partial \mu=J} x^{\mathrm{wt}(\mu)}
$$

Theorem (Çanakçı-King-P)

For $M_{J} \in \mathrm{CM}(B)$, there is a canonical choice of projective cover $\mathbf{P} M_{J} \rightarrow M_{J}$, inducing a canonical syzygy ΩM_{J}, for which

$$
\Phi_{\Omega_{M_{J}}}=\operatorname{MS}(J) .
$$

Under a suitable specialisation of the x_{i} to Plücker coordinates, taking $\Phi_{M_{J}}$ to the Plücker coordinate Δ_{J}, the Laurent polynomial $\operatorname{MS}(J)$ evaluates to the Marsh-Scott twist of Δ_{J}. That is, $\boldsymbol{\Omega}$ categorifies this twist.

The theorem is proved by computing a projective resolution of each perfect matching A-module N_{μ}, from which it follows that $\left[F \mathbf{P} M_{J}\right]-\left[N_{\mu}\right]=\operatorname{wt}(\mu)-\operatorname{wt}(D)$ for each perfect matching μ with $\partial \mu=J$.

Thanks for listening!

