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Dimer model

A dimer cover of a planar bipartite graph is a set of edges with the
property: every vertex is contained in exactly one edge of the set.

(On the square lattice / honeycomb lattice it can be viewed as a
tiling of a domain on the dual lattice by dominos / lozenges.)



Height function

Defined on G*, fixed reference configuration, random configuration

Note that (h — Eh) doesn't depend on the reference configuration.



Gaussian Free Field

GFF with zero boundary
conditions on a domain Q C C
is a conformally invariant
random generalized function:

ey

where ¢y are eigenfunctions of —A on § with zero boundary conditions,
Ak is the corresp. eigenvalue, and & are i.i.d. standard Gaussians.
The GFF is not a random function, but a random distribution.

GFF(z) = ka(bkf\zk), [1d analog: Brownian Bridge]
k

GFF is a Gaussian process on €2 with Green's function of the
Laplacian as the covariance kernel.
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o [Kenyon '01+] conjectured for general lattices/domains, proved for

[ad)

lozenge tilings without facets in the limit shape.
e [Petrov '12], [Bufetov-Gorin '16-17]: certain polygons

[Kenyon'08], [Berestycki-Laslier-Ray’ 16]: lozenge tilings
[Kenyon'00], [R."16-18]: domino tilings

(open question: domains composed of 2 X 2 blocks on ZZ)




h=h—Eh

Ambitious goal [Chelkak, Laslier, R.]:
Given a big weighted bipartite planar graph to embed it so that

K — GFF

Q: In which metric?

(g7 K) - (T(g*)v KT)? Kga:geK7~
t-embedding
or
circle pattern embedding




Results
Theorem (Kenyon, Lam, Ramassamy, R.)
t-embeddings exist at least in the following cases:
> If G° is a bipartite finite graph with outer face of degree 4.
> IfG% is a biperiodic bipartite graph.

Theorem (Chelkak, Laslier, R.)
Assume G° are perfectly t-embedded.

a) Technical assumptions on faces

b) The origami map is small in the bulk
= convergence to 7~ /2 GFFp.

Theorem (Affolter; Kenyon, Lam, Ramassamy, R.)

Circle pattern embeddings / t-embeddings of G* are preserved
under elementary transformations of G.

Application: Miquel dynamics.



Weighted dimers and gauge equivalence

Weight function v : E(G) — R+

Probability measure on dimer covers:

u(m) = 2 TT v(e)

eem

Definition
Two weight functions 11, o are said to be gauge equivalent if
there are two functions F: B — R and G : W — R such that for

any edge bw, v1(bw) = F(b)G(w)va(bw).

Gauge equivalent weights define the same probability measure p.



Face weights

For a planar bipartite graph, two weight functions are gauge
equivalent if and only if their face weights are equal, where the
face weight of a face with vertices wy, by, ..., wy, by is

Xf' — I/(Wlbl) . l/(kak) '

by wy




Kasteleyn matrix

Complex Kasteleyn signs:

Ty
o—O
T’ € C' ‘TI‘ = 1' /face of degree 2k /3» 1
oO——-0

LT3 T2kel (71)(k+1)

A (Percus—)Kasteleyn matrix K is a weighted, signed adjacency
matrix whose rows index the white vertices and columns index the
black vertices: K(w, b) = T, - v(wb).

e [Percus'69, Kasteleyn'61]: Z = |det K| =} 4, v(m)
e The local statistics for the measure i on dimer configurations
can be computed using the inverse Kasteleyn matrix.



Kasteleyn matrix as a discrete Cauchy—Riemann operator

Kasteleyn C signs proposed

by Kenyon for the uniform Kg' X Ka = Id
dimer model on Z? [flat case]: 1 ! 1
L 1 X i = ' 1
-1 1
T; _ 0
— 4 1 -1
—O—+o
=7
‘ Relation for 4 values of K§1:

1- Kot (v+1,v)=1- Ko (v — 1,V)+

i Kot (v +i V) =i Kot (v — i, V') = 8-

g

N

Discrete Cauchy-Riemann:
F(c) — F(a) = —i- (F(d) — F(b))

AN

[\5)




Kasteleyn matrix as a discrete Cauchy—Riemann operator

What about non-flat case / general weights / other grids?

A function F®: B — C is discrete holomorphic at w € W if

[OF°](w) := > F*(b)- K(w, b) = [F*K](w) =

b~w

For a fixed wg € W the function K~1(-, wp) is a discrete
holomorphic function with a simple pole at wy.

Q: How do discrete holomorphic functions correspond to their
continuous counterparts? [gauge + Kasteleyn signs + embedding]

(+) [flat] uniform dimer model on Z2, isoradial graphs

(?) General weighted planar bipartite graphs [Chelkak, Laslier, R.]



Definition: circle pattern

[Kenyon, Lam, Ramassamy, R.]

An embedding of a bipartite
graph with cyclic faces.

Assume that each bounded face
contains its circumcenter.

The circumcenters form an
embedding of the dual graph.



Definition: circle pattern

[Kenyon, Lam, Ramassamy, R.]

Circle pattern realisations with
an embedded dual, where the
dual graph is the graph of circle
centres.

(1) Circle patterns themselves
are not necessarily embedded.



Circle pattern

A circle pattern realisation with an embedded dual.




Definition: t-embedding
[Chelkak, Laslier, R.]
A t-embedding T

» Proper: All edges are straight

segments and they don't overlap.
Bipartite dual: The dual graph of
T is bipartite.

Angle condition: For every vertex
v one has

Z 0(f,v) = Z 0(f,v) =,

f white f black

where 0(f, v) denotes the angle of
a face f at the neighbouring
vertex v.



Circle pattern = t-embedding

Proposition (Kenyon, Lam, Ramassamy, R.)

Suppose G is a bipartite graph and u : V(G*) — C is a convex
embedding of the dual graph (with the outer vertex at co). Then
there exists a circle pattern C : V(G) — C with u as centers if and
only if the alternating sum of angles around every dual vertex is 0.



Circle pattern = t-embedding

c()
T (wb)

C(w)

Proposition (Kenyon, Lam, Ramassamy, R.)

Suppose G is a bipartite graph and u : V(G*) — C is a convex
embedding of the dual graph (with the outer vertex at o). Then
there exists a circle pattern C : V(G) — C with u as centers if and
only if the alternating sum of angles around every dual vertex is 0.



Kasteleyn weights
T — (G,Kr), where ZKT w, b) =

Then Ky is a Kasteleyn matrix.

Kasteleyn sign condition D angle condition

I1 K}7<~7(—|Evl:‘i71bl:>)) € (-1 R, > white =7 mod 27



Circle patterns and elementary transformations

[Affolter; Kenyon, Lam, Ramassamy, R.]: Cazaeim
T-embeddings of G* are preserved under elementary transformations of G.



Circle patterns and elementary transformations

Miquel theorem:

’i’) Central move
A

(v2—u)(us—u) _ (up—id)(us—0)
Wuz—u) — (unn—i)(us—0)




Circle patterns and elementary transformations

g
A =ac+bd

[Affolter; Kenyon, Lam, Ramassamy, R.]:

The Miquel move for circle centers corresponds to the urban
renewal for dimer model.



Miquel dynamics on the square lattice

e Miquel dynamics defined as a discrete-time dynamics on the
space of square-grid circle patterns: alternate Miquel moves
on all the green faces then on all the orange faces.

e |ts integrability follows from the identification with the
Goncharov-Kenyon dimer dynamics.

e The evolution is governed by cluster algebras mutations.

x % X x
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Miquel dynamics on the square lattice

[Goncharov, Kenyon]:

Green move:
Step 1: Apply an urban renuval move to the green faces.
Step 2: Contract all the degree-2 vertices.

o

Hex =

/ - o
i B 1+ X)(1+X,)
X — X1 X = X
x| - (L X)L+ X
X,

green move orange move



Existence of t-embeddings

(G, K) = (G",K) = (T(G"), KT), where Kga:geKT‘

Theorem (Kenyon, Lam, Ramassamy, R.)

t-embeddings of the dual graph G* exist at least in the following
cases:

> If G is a bipartite finite graph with outer face of degree 4,
with an equivalence class of real Kasteleyn edge weights under
gauge equivalence.

» If G is a biperiodic bipartite graph, with an equivalence class
of biperiodic real Kasteleyn edge weights under gauge
equivalence.

Keauge ST <— K7(wb) = G(w)K(wb)F(b)



Coulomb gauge for finite planar graphs

I Def: Functions G : W — C and
b “ F:B — C are said to give Coulomb gauge
for G if for all internal white vertices w

. « < E G(w)KupF(b) =0,
I x fi2

and for all internal black vertices b

o : . Z G(w)KypF(b) = 0.

I

> G(w) K, F(by) =

> G(wi)KupF(b) = —W,.




Coulomb gauge for finite planar graphs
Closed 1-form: w(wb) = G(w)K,pF(b).

Define ¢ : G* — C by the formula ¢(f1) — ¢(f2) = w(wb).

Theorem (Kenyon, Lam, Ramassamy, R.)

Suppose G has an outer face of degree 4. The mapping ¢ defines a
convex t-embedding into P of G* sending the outer vertices to the
corresponding vertices of P.



t-embedding of a finite planar graph with an outer face of degree 4

elementary

>

transformations

[A. Postnikov]:

Any nondegenerate planar bipartite graph with 4 marked boundary
vertices wi, by, wo, by can be built up from the 4-cycle graph with
vertices wi, b1, wa, by using a sequence of elementary
transformations; moreover the marked vertices remain in all
intermediate graphs.



T-embeddings
Boundary of degree 2k:

[Kenyon, Lam, Ramassamy, R.]:

» For each (generic) polygon P, there exists a t-embedding
“realisation onto P".
» Usually not unique (finitely many)

> Maybe self-intersections.

Open question: Is it always a proper embedding?



Origami map

To get an origami map O(G*) from T(G*) one can choose a root
face T(wp) and fold the plane along every edge of the embedding.




Origami map

To get an origami map O(G*) from T(G*) one can choose a root
face T(wp) and fold the plane along every edge of the embedding.




Origami map

To get an origami map O(G*) from T(G*) one can choose a root
face T(wp) and fold the plane along every edge of the embedding.




Uniqueness of biperiodic t-embeddings

To get an origami map O(G*) from T(G*) one can choose a root
face T(wp) and fold the plane along every edge of the embedding.

0(G*)

Theorem (Chelkak; Kenyon, Lam, Ramassamy, R.)

1. The boundedness of the origami map O is equivalent to the
boundedness of the radii in any circle pattern.

2. If G is biperiodic with biperiodic real Kasteleyn edge weights.
There exists unique periodic t-embedding with a bounded O.



T-holomorphicity, assumptions

[Chelkak, Laslier, R.]
Assumption (Lip(x,9))

Given two positive constant k < 1 and § > 0 we say that a
t-embedding T satisfies assumption LiP(k,d) in a region U C C if
|O(Z') = O(2)| < k-|Z/—z| forallz,z’ € U such that |z —Z'| > 6.

Remark:

- We think of § as the ‘mesh size’;
- All faces have diameter less than ¢;

- The actual size of faces could be in fact much smaller than 4.



T-holomorphicity, assumptions

[Chelkak, Laslier, R.]
Assumption (Lip(k,9))
Given two positive constant k < 1 and § > 0 we say that a

t-embedding T satisfies assumption LiP(x,d) in a region U C C if
|O(Z') = O(2)| < k-|Z/—z| forallz,z’ € U such that |z —Z'| > 0.

Assumption (Exp-Fat(¢), triangulations)

A sequence T? of t-embeddings with triangular faces satisfes
assumption Exp-FAT(8) on a region U° € C as § — 0 if the
following is fulfilled for each 8 > 0:

If one removes all ‘exp(—30~1)-fat’ triangles from 779, then the size
of remaining vertex-connected components tends to zero as § — 0.



T-holomorphicity

[Chelkak, Laslier, R.]

e t-holomorphicity:
Fix w € W. Given a function F? on B,
s.t. F2(b) € npR and K7 F2 =0 at w,
there exists F; such that
F2(b;) are projections of FJ(w)

— — AT (bw)*
nbnw = [T (bw)"|

Moy R

e bounded t-holomorphic functions are
uniformly (in 0) Holder and their contour
integrals vanish as § — 0.

fpu F* T =0

K7T1( -, wp) is a t-holomorphic function for a fixed white vertex wy



T-graph = t-embedding 4+ Origami map

[Kenyon-Sheffield]: A pairwise disjoint collection Ly, Ly, ..., L, of open
line segments in R? forms a T-graph in R? if U"_;L; is connected and
contains all of its limit points except for some set of boundary points.

——__

r(u22)

v ér(urn) b br(urs)
[Chelkak, Laslier, R.]:

e For any a with || =1, the set T + aO is a T-graph, possibly non
proper and with degenerate faces.

e A t-white-holomorphic function F,,, can be integrated into a real
harmonic function on a T-graph (Re(Ic[Fy]) is harmonic on T + O).

e Lipschitz regularity of harmonic functions on 7 + aO.



Height function — GFF

Theorem (Chelkak, Laslier, R.)

Assume that T satisfy assumptions LiP(k,0) and EXp-FAT(8) on
compact subsets of €2 and

(1) The origami map is small: O°(z) P 0
—
(1 K,;(;l(b(s, w?) is uniformly bounded as § — 0 = convergence
(1) the correlations B[RO (V{) ... hO(v0)] are to 7~ 1/2 GFFy,.
uniformly small near the boundary of Q

A similar (though more involved) analysis can be performed assuming
that the origami maps O° m 9, which is a graph of a Lorenz-minimal
—

surface in R2+2,

[Chelkak, Laslier, R.]: “Bipartite dimer model: perfect t-embeddings and
Lorentz-minimal surfaces” (In preparation)



T-embeddings
Boundary of degree 2k:

[Kenyon, Lam, Ramassamy, R.]:

» For each (generic) polygon P, there exists a t-embedding
“realisation onto P".
» Usually not unique (finitely many)

> Maybe self-intersections.

Open question: Is it always a proper embedding?



Perfect t-embeddings

[Chelkak, Laslier, R.]
Definition. Perfect t-embeddings:

» P tangental to ID [not necessary convex]

> T(f;)T(f!) bisector of the T (fi_1)T (£;)T (fi+1)
Remark:

e proper embeddings (no self-intersections)

[at least if P is convex]
e Not unique:
(F, G) ~ perfect t-embedding, then
for all |7| < 1
(F +7F,G + 7G) ~ perfect t-embedding.

Open question: existence of perfect t-embeddings.
Conjecture: perfect t-embedding always exists.



Generalization

Theorem (Chelkak, Laslier, R.)
Let G° be finite weighted bipartite pnanar graphs. Assume that
e 79 are perfect t-embeddings of (G°)* satisfying
assumption EXpP-FAT(4)
o (7°,0%) converge to a Lorentz-minimal surface S.

Then the height fluctuations converge to the standard Gaussian
Free Field in the intrinsic metric of S.

Chelkak, Laslier, R. “Bipartite dimer model: perfect t-embeddings and
Lorentz-minimal surfaces” (In preparation)

Chelkak, Ramassamy “Fluctuations in the Aztec diamonds via a
Lorentz-minimal surface” (arXiv:2002.07540)



Thank you!




