Kasteleyn Operators from Mirror Symmetry

Harold Williams

University of Southern California

arXiv:1810.05985 joint with D. Treumann and E. Zaslow

The Main Result

• Fix an embedded bipartite graph $\Gamma \subset \mathcal{T}^2$, edge weighting $\mathcal{E}: \Gamma_1 \to \mathbb{C}^{\times}$, and Kasteleyn orientation $\kappa: \Gamma_1 \to \{\pm 1\}$.

Theorem (Treumann-W.-Zaslow)

The following coherent sheaves on $(\mathbb{C}^{\times})^2$ associated to $(\Gamma, \mathcal{E}, \kappa)$ are isomorphic:

- **1** the spectral transform of the Kasteleyn operator K(x, y), and
- ② the homological mirror of the conjugate Lagrangian $L_{\Gamma} \subset T^*T^2$ equipped with a brane structure using (\mathcal{E}, κ) .

Dimer Models and the Kasteleyn Operator

• $\kappa: \Gamma_1 \to \{\pm 1\}$ is a Kasteleyn orientation if for each face F of Γ ,

$$\prod_{E \subset \partial F} \kappa(E) = \begin{cases} +1 & \text{if } |\partial F| \equiv 2 \mod 4 \\ -1 & \text{if } |\partial F| \equiv 0 \mod 4 \end{cases}$$

• Choose generators $x, y \in H_1(T^2, \mathbb{Z})$ and closed curves γ_x, γ_y in T^2 representing their Poincaré duals.

Definition

K(x,y) is the $(\Gamma_0^b \times \Gamma_0^w)$ -matrix-valued Laurent polynomial with entries

$$K(x,y)_{\langle v_b,v_w\rangle} = \sum_{v_b = F} v_w \mathcal{E}(E) \kappa(E) x^{\langle \gamma_x,E \rangle} y^{\langle \gamma_y,E \rangle}.$$

Dimer Models and the Kasteleyn Operator

• An example:

$$K(x,y) = \begin{bmatrix} a_1 + a_2x & b_1 + b_2y^{-1} \\ -c_1 - c_2y & d_1 + d_2x^{-1} \end{bmatrix}$$

$$\det K(x, y) = a_1 d_1 + a_2 d_2 + b_1 c_1 + b_2 c_2 + a_1 d_2 x^{-1} + a_2 d_1 x + b_1 c_2 y + b_2 c_1 y^{-1}$$

Dimer Models and the Kasteleyn Operator

• An example:

$$K(x,y) = \begin{bmatrix} a_1 + a_2x & b_1 + b_2y^{-1} \\ -c_1 - c_2y & d_1 + d_2x^{-1} \end{bmatrix}$$

$$\det K(x,y) = a_1 d_1 + a_2 d_2 + b_1 c_1 + b_2 c_2 + a_1 d_2 x^{-1} + a_2 d_1 x + b_1 c_2 y + b_2 c_1 y^{-1}$$

• Kenyon-Okounkov-Sheffield: dimer model on lift of Γ to \mathbb{R}^2 controlled by **spectral transform** of K(x,y), the cokernel of

$$\mathbb{C}[x^{\pm 1}, y^{\pm 1}]^{\Gamma_0^w} \xrightarrow{K(x, y)} \mathbb{C}[x^{\pm 1}, y^{\pm 1}]^{\Gamma_0^b}.$$

- This is a rank one coherent sheaf on (C[×])² supported on the spectral curve {det K(x, y) = 0} ⊂ (C[×])².
- Up to isomorphism, only depends on \mathcal{E} up to gauge \Longrightarrow defines family of objects in $\mathrm{Coh}(\mathbb{C}^\times)^2$ parametrized by $H^1(\Gamma,\mathbb{C}^\times) \cong (\mathbb{C}^\times)^{b_1(\Gamma)}$.

Symplectic Geometry of Bipartite Graphs

- Goncharov-Kenyon: Γ embedded bipartite graph in a surface S \Longrightarrow Poisson structure on $(\mathbb{C}^{\times})^{b_1(\Gamma)}$ via **conjugate surface** L_{Γ} .
- Start with zig-zag paths of Γ, immersed (co-)oriented curves with exactly one crossing on each edge of Γ. These divides S into "white", "black", and "alternating" regions.
- Define L_{Γ} by blowing up S at crossings, then taking the closure of the white and black regions:

Symplectic Geometry of Bipartite Graphs

- Recall T^*S has exact symplectic form $\omega = d\lambda$, $\lambda = \sum p_i dq_i$.
- A surface $L \subset T^*S$ is exact Lagrangian if $\lambda|_L$ is exact.
- Write ∂T^*S for the fiberwise boundary of T^*S , and let $\Lambda_{\Gamma} \subset \partial T^*S$ denote the conormal lift of the zig-zag paths of Γ .

Theorem (Shende-Treumann-W.-Zaslow)

The surface L_{Γ} embeds into T^*S as an exact Lagrangian asymptotic to Λ_{Γ} , canonical up to Hamiltonian isotopy.

Symplectic Geometry of Bipartite Graphs

- Recall T^*S has exact symplectic form $\omega = d\lambda$, $\lambda = \sum p_i dq_i$.
- A surface $L \subset T^*S$ is exact Lagrangian if $\lambda|_L$ is exact.
- Write ∂T^*S for the fiberwise boundary of T^*S , and let $\Lambda_{\Gamma} \subset \partial T^*S$ denote the conormal lift of the zig-zag paths of Γ .

Theorem (Shende-Treumann-W.-Zaslow)

The surface L_{Γ} embeds into T^*S as an exact Lagrangian asymptotic to Λ_{Γ} , canonical up to Hamiltonian isotopy.

- Corollary: equipping L_{Γ} with local system, spin structure defines a family of objects parametrized by $H^1(\Gamma, \mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^{b_1(\Gamma)}$ in the partially wrapped Fukaya category $\mathcal{W}(T^*S, \Lambda_{\Gamma})$.
- Useful model: can identify $\mathcal{W}(T^*S, \Lambda_{\Gamma})$ with $Sh_{\Lambda_{\Gamma}}(T^*S)$, the category of constructible sheaves with singular support asymptotic to Λ_{Γ} (Ganatra-Pardon-Shende).

Toric Mirror Symmetry

• Given a fan $\Sigma \subset \mathbb{R}^n$, write X_{Σ} for the associated toric compactification of $(\mathbb{C}^{\times})^n$.

Theorem (Fang-Liu-Treumann-Zaslow, Kuwagaki)

There exists a Legendrian subset $\Lambda_{\Sigma} \subset \partial T^*T^n$ and an equivalence

$$Sh_{\Lambda_{\Sigma}}(T^n)\cong \mathrm{Coh}(X_{\Sigma}).$$

• Example (after Beilinson): $X_{\Sigma} = \mathbb{P}^2$

Toric Mirror Symmetry

• Given Γ , let $\Sigma(\Gamma)$ denote the complete fan in $H^1(T^2,\mathbb{R}) \cong \mathbb{R}^2$ with rays generated by the classes of the zig-zag paths of Γ .

Lemma

If Γ is consistent there is a Legendrian isotopy from Λ_{Γ} into Λ_{Σ} .

- Note: consistency does not restrict curves which appear.
- Caveat: should really consider stacky fans in general.
- Guillermou-Kashiwara-Schapira: an isotopy as above induces a fully faithful functor $Sh_{\Lambda_{\Gamma}}(T^2) \hookrightarrow Sh_{\Lambda_{\Sigma}}(T^2)$.
- Example: a graph for \mathbb{P}^2

Example of Main Result: A Hyperplane $H \subset \mathbb{P}^2$

• The triple $(L_{\Gamma}, \mathcal{E}, \kappa)$ defines a sheaf in $Sh_{\Lambda_{\Gamma}}(T^2)$ (top right), which we can isotope to a sheaf in $Sh_{\Lambda_{\Sigma}}(T^2)$ (bottom right).

Bonus: Discrete Integrability via Mirror Symmetry

• The **square move** is a basic operation on bipartite graphs. It acts on Λ_{Γ} by a Legendrian isotopy.

Theorem (Shende-Treumann-W.-Zaslow)

 $\Gamma\mapsto\Gamma'$ square move \Longrightarrow functor $Sh_{\Lambda_{\Gamma}}(T^2)\to Sh_{\Lambda_{\Gamma'}}(T^2)$ relates families $(\mathbb{C}^\times)^{b_1(\Gamma)}$ and $(\mathbb{C}^\times)^{b_1(\Gamma')}$ by cluster \mathcal{X} -transformation.

Corollary (Goncharov-Kenyon)

 Γ , Γ' differ by square move, \mathcal{E} , \mathcal{E}' by cluster \mathcal{X} -transformation, and κ , κ' in the obvious way \Longrightarrow Kasteleyn operators associated to $(\Gamma, \mathcal{E}, \kappa)$ and $(\Gamma', \mathcal{E}', \kappa')$ have the same spectral transform.

Bonus: Discrete Integrability via Mirror Symmetry

• Corollary: a periodic sequence of square moves of Γ acts by a Legendrian autoisotopy of Λ_{Γ} . Conjugating this by an isotopy $\Lambda_{\Gamma} \to \Lambda_{\Sigma(\Gamma)}$ gives an autoisotopy of its image, for example:

• The group of such autoisotopies is $\mathbb{Z}^{|\Sigma_1|}$, hence is equivalent to the group of line bundles $\mathcal{O}(\sum_i n_i D_i)$ on $X_{\Sigma(\Gamma)}$.

Theorem (Treumann-W.-Zaslow)

Mirror symmetry intertwines the autoequivalence of $Sh_{\Sigma(\Gamma)}(T^2)$ defined by the isotopy $(n_i) \in \mathbb{Z}^{|\Sigma_1|}$ with tensoring by $\mathcal{O}(\sum_i n_i D_i)$.

• Corollary: the action of a periodic square move sequence on spectral data is given by tensoring with the corresponding $\mathcal{O}(\sum_i n_i D_i)$ (c.f. Fock-Marshakov, Goncharov).