
Eigenvectors of a symmetric matrix



We have seen two kinds of bases for Rn that are particularly

convenient:

• Orthonormal bases, where our intuition from Euclidean geometry

is relevant

• Eigenbases, which are good for computing powers of matrices.

What happens if we put them together?



Let A be a square matrix. Suppose that A has an orthonormal

eigenbasis ~v1, ~v2, . . . , ~vn, with eigenvalues λ1, λ2, . . . , λn. What

can we say about A?

Let Q be the matrix with columns ~v1, ~v2, . . . , ~vn. Let D be the

diagonal matrix with diagonal λ1, λ2, . . . , λn. Then we have

A = QDQ−1.
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We deduce that

AT = (QDQT )T = (QT )TDTQT = QDQT = A.

In other words, A is symmetric!
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Let’s see why, if A is a symmetric matrix with an eigenbasis, then

A has an orthonormal eigenbasis.

Let ~v and ~w be any two vectors. Since A is symmetric,

~vTA~w = ~vTAT ~w = (A~v)T ~w. In other words, ~v · (A~w) = (A~v) · ~w.

Now, let ~v and ~w be two eigenvectors of A, with distinct

eigenvalues α and β.

~v · (β ~w) = ~w · (α~v).

β~v · ~w = α~v · ~w.

(β − α)~v · ~w = 0

~v · ~w = 0.

So ~v and ~w are orthogonal! We have shown that any eigenbasis of

A will be orthogonal, and we can rescale such a basis to be

orthonormal.



The spectral theorem: If A is a symmetric n× n matrix, then A

has an orthonormal eigenbasis.

So far, we have seen that

• If A has an orthonormal eigenbasis, then A is symmetric.

• If A is symmetric and has an eigenbasis, it has an orthonormal

eigenbasis.

That symmetric matrices have eigenbases at all is much harder.

We’ll prove that later, after we’ve also talked about singular value

decomposition.

For now, two other ways to think about the spectral theorem.



The spectral theorem gives us a geometric way to think about the

condition that a matrix is symmetric: A is symmetric if and only if

there is an orthonormal bases on which A acts by dilation.
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The largest possible value is to take c1 = 1 and the other to be 0;

the smallest is to take cn = 1 and the others to be 0.

So the largest value of |A~w| is λ1, by taking ~w = ~v1, and the

smallest value of |A~w| is λn, by taking ~w = ~vn.


