Eigenvectors of a symmetric matrix




We have seen two kinds of bases for R™ that are particularly

convenient:

e Orthonormal bases, where our intuition from Euclidean geometry

i1s relevant

e FEigenbases, which are good for computing powers of matrices.

What happens if we put them together?




Let A be a square matrix. Suppose that A has an orthonormal
eigenbasis v1, U, ..., Uy, with eigenvalues A1, Ao, ..., A,. What
can we say about A?

Let Q be the matrix with columns vy, va, ..., v,,. Let D be the

diagonal matrix with diagonal A\, Ao, ..., A,,. Then we have

A=QDQ .
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Let A be a square matrix. Suppose that A has an orthonormal
eigenbasis v, v, ..., U,, with eigenvalues A\, Ao, ..., A\,,. What

can we say about A?

Let () be the matrix with columns vy, va, ..., v,. Let D be the

diagonal matrix with diagonal A1, Ao, ..., A,,. Then we have
A=QDQ .

But, since v1, vs, ..., U, is orthonormal, we know that () is
orthogonal, and thus Q! = Q. So we have

A=QDQ"'.

We deduce that

AT =(@DQ")" =(@Q")'D'Q" =QDQ" = A

In other words, A is symmetric!
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We have thus shown: Let A be a square matrix. If A has an

orthonormal eigenbasis vy, v, ..., U, then A is symmetric,
meaning that A = AT,

Symmetric matrices come up in many places.

36. A machine contains the grid of wires shown in the ac-
companying sketch. At the seven indicated points, the
temperature is kept fixed at the given values (in “C).
Consider the temperamres Ty(r), T2(z), and T3(r) at
the other three mesh points. Because of heat flow along
the wires, the temperatures T;(r) changes according

to the formula
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orthonormal eigenbasis v7, vs, ..., U, then A is symmetric,
meaning that A = AT

The big result about symmetric matrices is that the reverse is true:

The spectral theorem: If A is a symmetric n X n matrix, then A
has an orthonormal eigenbasis.




We have thus shown: Let A be a square matrix. If A has an

orthonormal eigenbasis v7, vs, ..., U, then A is symmetric,
meaning that A = AT

The big result about symmetric matrices is that the reverse is true:

The spectral theorem: If A is a symmetric n X n matrix, then A

has an orthonormal eigenbasis.

The easy part of this is that, if A has an eigenbasis, then it has an

orthonormal eigenbasis.




Let’s see why, if A is a symmetric matrix with an eigenbasis, then
A has an orthonormal eigenbasis.

Let ¥ and w be any two vectors. Since A is symmetric,
v Aw = v AT = (A0)T 0. In other words, ¥ - (AwW) = (AD) - .
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Let’s see why, if A is a symmetric matrix with an eigenbasis, then

A has an orthonormal eigenbasis.

Let v and w be any two vectors. Since A is symmetric,
71 Aw = v AT = (A0) 1@, In other words, ¥ - (AwW) = (A7) - .

Now, let v and w be two eigenvectors of A, with distinct

eigenvalues o and (.

So v and w are orthogonal! We have shown that any eigenbasis of
A will be orthogonal, and we can rescale such a basis to be

orthonormal.




The spectral theorem: If A is a symmetric n x n matrix, then A

has an orthonormal eigenbasis.
So far, we have seen that
e If A has an orthonormal eigenbasis, then A is symmetric.

o If A is symmetric and has an eigenbasis, it has an orthonormal

eigenbasis.

That symmetric matrices have eigenbases at all is much harder.
We'll prove that later, after we’ve also talked about singular value

decomposition.

For now, two other ways to think about the spectral theorem.




The spectral theorem gives us a geometric way to think about the

condition that a matrix is symmetric: A is symmetric if and only if

there is an orthonormal bases on which A acts by dilation.
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Here is one more important way to think about the eigenvectors of

a symmetric matrix. Let A be a symmetric matrix, with

orthonormal eigenbasis v, v, ..., U, and eigenvalues A1, Ao, ...

Ap,. Sort them so that Ay > Ao > -+ > \,,.

If w is a vector of length 1, how long can Aw be? How short can it
be?




Here is one more important way to think about the eigenvectors of
a symmetric matrix. Let A be a symmetric matrix, with
orthonormal eigenbasis v, v, ..., U, and eigenvalues A1, Ao, ...
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be?

Write W = c107 + cotis + - - - + ¢ Uy,. The condition that || =1 is

that ¢? +c¢5 + -+ c2 = 1. We have
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Here is one more important way to think about the eigenvectors of
a symmetric matrix. Let A be a symmetric matrix, with
orthonormal eigenbasis v, 0o, ..., U, and eigenvalues A1, Ao, ...
Ap,. Sort them so that Ay > Ao > --- > \,,.

If w is a vector of length 1, how long can Aw be? How short can it
be?

Write W = 107 + cotis + - - - + ¢ Uy,. The condition that |w| =1 is
that ¢? +c¢5 + -+ c2 = 1. We have

(A’U?) . (A”(D) — (Cl)\l’l_fl iR Cn)\nﬁn) . (Cl)\l’Ul i Cn)\nﬁn)

The largest possible value is to take ¢y = 1 and the other to be 0;
the smallest is to take ¢,, = 1 and the others to be 0.

So the largest value of |Aw| is A1, by taking @ = ¢/, and the
smallest value of |Ad| is A\, by taking @ = .




