Subspaces
In the previous lecture, we learned about the kernel and image of a linear map.

- The kernel of A is the set of vectors \vec{x} with $A\vec{x} = \vec{0}$.
- The image of A is the set of vectors \vec{b} for which $A\vec{x} = \vec{b}$ is solvable.
In the previous lecture, we learned about the kernel and image of a linear map.

- The kernel of A is the set of vectors \vec{x} with $A\vec{x} = \vec{0}$.
- The image of A is the set of vectors \vec{b} for which $A\vec{x} = \vec{b}$ is solvable.

Both of these are examples of *subspaces*. A *subspace* of \mathbb{R}^n is a set V of vectors in \mathbb{R}^n such that

- $\vec{0}$ is in V
- If \vec{x} and \vec{y} are in V, then $\vec{x} + \vec{y}$ is in V
- If \vec{x} is in V, and k is a scalar, then $k\vec{x}$ is in V.
A *subspace* of \mathbb{R}^n is a set V of vectors in \mathbb{R}^n such that

- $\vec{0}$ is in V
- If \vec{x} and \vec{y} are in V, then $\vec{x} + \vec{y}$ is in V
- If \vec{x} is in V, and k is a scalar, then $k\vec{x}$ is in V.

Which of these are subspaces of \mathbb{R}^2?
Let’s see why kernel is a subspace:

- We have $A\vec{0} = \vec{0}$.
- If $A\vec{x} = \vec{0}$ and $A\vec{y} = \vec{0}$, then $A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{0} + \vec{0} = \vec{0}$.
- If $A\vec{x} = \vec{0}$, then $A(k\vec{x}) = k(A\vec{x}) = k\vec{0} = \vec{0}$.
Let’s see why kernel is a subspace:

- We have \(A\vec{0} = \vec{0} \).
- If \(A\vec{x} = \vec{0} \) and \(A\vec{y} = \vec{0} \), then \(A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{0} + \vec{0} = \vec{0} \).
- If \(A\vec{x} = \vec{0} \), then \(A(k\vec{x}) = k(A\vec{x}) = k\vec{0} = \vec{0} \).

And the same for image:

- We have \(A\vec{0} = \vec{0} \).
- If \(A\vec{x} = \vec{b} \) and \(A\vec{y} = \vec{c} \), then \(A(\vec{x} + \vec{y}) = A\vec{x} + A\vec{y} = \vec{b} + \vec{c} \).
- If \(A\vec{x} = \vec{b} \), then \(A(k\vec{x}) = k(A\vec{x}) = k\vec{b} \).
One of the main ways we describe a subspace is as the *span* of a list of vectors.

The span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ is the set of all vectors which can be written in the form

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k.$$
One of the main ways we describe a subspace is as the span of a list of vectors.

The span of \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k is the set of all vectors which can be written in the form

$$c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k.$$

This is also the image of the matrix with columns \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k, since

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_k \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k$$
The same subspace can be written as the span of many different sets of vectors.

For example, consider the plane $x + y + z = 0$ in \mathbb{R}^3. It is described as all of:

$$\text{Span} \left(\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right), \text{Span} \left(\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right), \text{Span} \left(\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \right),$$

$$\text{Span} \left(\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right), \ldots$$

This is the theme we’ll pick up in the next lecture.