Eigenbases
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. We saw before that, if \vec{w} is in the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$, then we have a simple formula for $A^n \vec{w}$.
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. We saw before that, if \vec{w} is in the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$, then we have a simple formula for $A^n \vec{w}$.

$$A^n (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k) = c_1 \lambda_1^n \vec{v}_1 + c_2 \lambda_2^n \vec{v}_2 + \cdots + c_k \lambda_k^n \vec{v}_k.$$
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. We saw before that, if \vec{w} is in the span of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$, then we have a simple formula for $A^n \vec{w}$.

$$A^n (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k) = c_1 \lambda_1^n \vec{v}_1 + c_2 \lambda_2^n \vec{v}_2 + \cdots + c_k \lambda_k^n \vec{v}_k.$$

So it is useful to express vectors as linear combinations of eigenvectors. The ideal situation would be is A has a basis of eigenvectors. We call this an *eigenbasis*.
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let’s talk about whether or not $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ could be a basis.

There are two issues:

1. Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

2. Do $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ span \mathbb{R}^n?
Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

The first question has a very clear answer!

Theorem: Let A be an $n \times n$ square matrix. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_k$ are scalars, no two of them equal, and that \vec{v}_i is a nonzero λ_i-eigenvector of A. Then the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are linearly independent.
Are \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \) linearly independent?

The first question has a very clear answer!

Theorem: Let \(A \) be an \(n \times n \) square matrix. Suppose that \(\lambda_1, \lambda_2, \ldots, \lambda_k \) are scalars, no two of them equal, and that \(\vec{v}_i \) is a nonzero \(\lambda_i \)-eigenvector of \(A \). Then the vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \) are linearly independent.

Let’s first see why it works for \(k = 2 \).
Are \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k linearly independent?

The first question has a very clear answer!

Theorem: Let A be an $n \times n$ square matrix. Suppose that λ_1, λ_2, \ldots, λ_k are scalars, no two of them equal, and that \vec{v}_i is a nonzero λ_i-eigenvector of A. Then the vectors \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k are linearly independent.

Let’s first see why it works for $k = 2$. To say that \vec{v}_1 and \vec{v}_2 are linearly independent is to say that they are both nonzero, and they are not proportional.

We assumed that \vec{v}_1 and \vec{v}_2 are nonzero. Suppose that they were proportional, so that $\vec{v}_2 = c\vec{v}_1$. Then $A\vec{v}_2 = A(c\vec{v}_1) = cA\vec{v}_1 = c\lambda_1 \vec{v}_1$ and also $A\vec{v}_2 = \lambda_2 \vec{v}_2 = c\lambda_2 \vec{v}_1$.
Are \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k linearly independent?

The first question has a very clear answer!

Theorem: Let A be an $n \times n$ square matrix. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_k$ are scalars, no two of them equal, and that \vec{v}_i is a nonzero λ_i-eigenvector of A. Then the vectors \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k are linearly independent.

Let’s first see why it works for $k = 2$. To say that \vec{v}_1 and \vec{v}_2 are linearly independent is to say that they are both nonzero, and they are not proportional.

We assumed that \vec{v}_1 and \vec{v}_2 are nonzero. Suppose that they were proportional, so that $\vec{v}_2 = c\vec{v}_1$. Then $A\vec{v}_2 = A(c\vec{v}_1) = cA\vec{v}_1 = c\lambda_1 \vec{v}_1$ and also $A\vec{v}_2 = \lambda_2 \vec{v}_2 = c\lambda_2 \vec{v}_1$.

So $c\lambda_1 \vec{v}_1 = c\lambda_2 \vec{v}_1$ and $c(\lambda_1 - \lambda_2)\vec{v}_1 = 0$. But $\lambda_1 - \lambda_2$ is not zero, since the lambdas are different, the scalar c is nonzero since $\vec{v}_2 \neq 0$, and the vector \vec{v}_1 is also nonzero. This gives a contradiction.
Theorem: Let A be an $n \times n$ square matrix. Suppose that $\lambda_1, \lambda_2, \ldots, \lambda_k$ are scalars, no two of them equal, and that \vec{v}_i is a nonzero λ_i-eigenvector of A. Then the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ are linearly independent.

We will prove the general case by induction on k. So, suppose we have already shown that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ are linearly independent. We want to show that adding in the vector \vec{v}_k doesn’t disturb the linear independence. Suppose, for the sake of contradiction, that \vec{v}_k is redundant. So

$$\vec{v}_k = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1}.$$
Suppose we have already shown that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ are linearly independent. Suppose, for the sake of contradiction, that \vec{v}_k is redundant. So

$$\vec{v}_k = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1}.$$

We have:

$$A\vec{v}_k = A(c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1})$$

$$= c_1 A\vec{v}_1 + c_2 A\vec{v}_2 + \cdots + c_{k-1} A\vec{v}_{k-1}$$

$$= c_1 \lambda_1 \vec{v}_1 + c_2 \lambda_2 \vec{v}_2 + \cdots + c_{k-1} \lambda_{k-1} \vec{v}_{k-1}.$$

But also:

$$A\vec{v}_k = \lambda_k \vec{v}_k$$

$$= \lambda_k (c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1})$$

$$= c_1 \lambda_k \vec{v}_1 + c_2 \lambda_k \vec{v}_2 + \cdots + c_{k-1} \lambda_k \vec{v}_{k-1}.$$

So $c_1 \lambda_1 \vec{v}_1 + \cdots + c_{k-1} \lambda_{k-1} \vec{v}_{k-1} = c_1 \lambda_k \vec{v}_1 + \cdots + c_{k-1} \lambda_k \vec{v}_{k-1}$

and $c_1 (\lambda_1 - \lambda_k) \vec{v}_1 + \cdots + c_{k-1} (\lambda_{k-1} - \lambda_k) \vec{v}_{k-1} = \vec{0}.$
Suppose we have already shown that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ are linearly independent. Suppose, for the sake of contradiction, that \vec{v}_k is redundant. So

$$\vec{v}_k = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1}$$

$$\cdots \text{after some computations}\cdots$$

$$c_1(\lambda_1 - \lambda_k) \vec{v}_1 + \cdots + c_{k-1}(\lambda_{k-1} - \lambda_k) \vec{v}_{k-1} = \vec{0}.$$

But we assumed that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ were linearly independent, so this means that

$$c_1(\lambda_1 - \lambda_k) = c_2(\lambda_2 - \lambda_k) = \cdots = c_{k-1}(\lambda_{k-1} - \lambda_k) = 0.$$

And the λ’s are all different, so $c_1 = c_2 = \cdots = c_{k-1} = 0.$
Suppose we have already shown that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ are linearly independent. Suppose, for the sake of contradiction, that \vec{v}_k is redundant. So

$$\vec{v}_k = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_{k-1} \vec{v}_{k-1}$$

\[\cdots \text{after some computations} \cdots \]

$$c_1(\lambda_1 - \lambda_k) \vec{v}_1 + \cdots + c_{k-1}(\lambda_{k-1} - \lambda_k) \vec{v}_{k-1} = \vec{0}. \]

But we assumed that $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{k-1}$ were linearly independent, so this means that

$$c_1(\lambda_1 - \lambda_k) = c_2(\lambda_2 - \lambda_k) = \cdots = c_{k-1}(\lambda_{k-1} - \lambda_k) = 0.$$

And the λ’s are all different, so $c_1 = c_2 = \cdots = c_{k-1} = 0$.

But then $\vec{v}_k = 0 + 0 + \cdots + 0 = 0$, contradicting that the \vec{v}_j are nonzero eigenvectors. \textbf{QED}
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let’s talk about whether or not $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ could be a basis.

There are two issues:

1. Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

2. Do $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ span \mathbb{R}^n?
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let’s talk about whether or not $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ could be a basis.

There are two issues:

1. Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

 ○ Yes, assuming all the λ_i are different from each other.

2. Do $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ span \mathbb{R}^n?
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let’s talk about whether or not $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ could be a basis.

There are two issues:

1. Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

 ○ Yes, assuming all the λ_i are different from each other.

2. Do $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ span \mathbb{R}^n?

 ○ This is trickier. If the characteristic polynomial of A has n distinct roots, then the answer must be yes, since n linearly independent vectors must be a basis.
Let A be an $n \times n$ square matrix. Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ be nonzero eigenvectors of A, with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let’s talk about whether or not $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ could be a basis.

There are two issues:

1. Are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ linearly independent?

 ○ Yes, assuming all the λ_i are different from each other.

2. Do $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ span \mathbb{R}^n?

 ○ This is trickier. If the characteristic polynomial of A has n distinct roots, then the answer must be yes, since n linearly independent vectors must be a basis.

 ○ To discuss the general case, we introduce the notions of geometric and algebraic multiplicity. These are the topic of the next lecture.