
Algebraic and Geometric Multiplicity: Proofs



Let A be an n× n square matrix with eigenvalues λ1, λ2, . . . , λk.

Let ai be the algebraic multiplicity of λi. Let Vi be the

λi-eigenspace and let gi = dimVi, the geometric multiplicity of λi.

Theorem 1: We have
∑
gi = n if and only if A has an eigenbasis.

Theorem 2: We have gi ≤ ai.

Theorem 3: We have
∑
ai ≤ n, and

∑
ai = n if and only if

det(A− tId) factors completely into linear terms.



Let A be an n× n square matrix with eigenvalues λ1, λ2, . . . , λk.

Let ai be the algebraic multiplicity of λi. Let Vi be the

λi-eigenspace and let gi = dimVi, the geometric multiplicity of λi.

Theorem 1: We have
∑
gi = n if and only if A has an eigenbasis.

Theorem 2: We have gi ≤ ai.

Theorem 3: We have
∑
ai ≤ n, and

∑
ai = n if and only if

det(A− tId) factors completely into linear terms.

We told the story in the order that explains the importance of the

results, but the proofs are easiest in the reverse order.



Let A be an n× n square matrix with eigenvalues λ1, λ2, . . . , λk.

Let ai be the algebraic multiplicity of λi. Let Vi be the

λi-eigenspace and let gi = dimVi, the geometric multiplicity of λi.

Theorem 3: We have
∑
ai ≤ n, and

∑
ai = n if and only if

det(A− tId) factors completely into linear terms.



Let A be an n× n square matrix with eigenvalues λ1, λ2, . . . , λk.

Let ai be the algebraic multiplicity of λi. Let Vi be the

λi-eigenspace and let gi = dimVi, the geometric multiplicity of λi.

Theorem 3: We have
∑
ai ≤ n, and

∑
ai = n if and only if

det(A− tId) factors completely into linear terms.

We have

det(A− tId) =
∏
i

(λi − t)ai · (some polynomial with no roots).

So

deg det(A− tId) = n ≥
∑

ai.

We have equality if and only if det(A− tId) factors into linear

terms. QED
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Let ~v1, ~v2, . . . , ~vg be a basis for the λ-eigenspace. We want to show

that (λ− t)g divides the characteristic polynomial.

Complete ~v1, ~v2, . . . , ~vg to a basis

B = (~v1, ~v2, . . . , ~vg, ~w1, ~w2, . . . , ~wn−g) for Rn. In the coordinates

of the basis B, the matrix of A looks like
λ
λ

. . .
λ

B

0 C


So

A− tIdn =


λ−t

λ−t
. . .

λ−t

B

0 C − tIdn−g





Let ~v1, ~v2, . . . , ~vg be a basis for the λ-eigenspace. We want to show

that (λ− t)g divides the characteristic polynomial.

det(A− tIdn) = det


λ−t

λ−t
. . .

λ−t

B

0 C − tIdn−g


= (λ− t)g det(C − tIdn−g). QED
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λi-eigenspace and let gi = dimVi, the geometric multiplicity of λi.

Theorem 1: We have
∑
gi = n if and only if A has an eigenbasis.

First of all, suppose that A has an eigenbasis: ~x1, ~x2, . . . , ~xn.

For each λi, let hi be the number of ~xi which are λi-eigenvectors.

So n =
∑
hi.

The λi-eigenvectors are contained in Vi, so the number of them is

at most dimVi. So hi ≤ gi.

So n =
∑
hi ≤

∑
gi. But we also already noted that∑

gi ≤
∑
ai ≤ n. So

∑
gi = n.
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f1~u1 + · · · + fa~ua = g1~v1 + · · · + gb~vb = h1 ~w1 + · · · + hc ~wc = ~0.

But, since ~u1, ~u2, . . . , ~ua is a basis of U , this means that

f1 = · · · = fa = 0.

Similarly, g1 = · · · = gb = 0 and h1 = · · · = hc = 0.

We have shown that all the coefficients of our linear relation are 0.

So we have shown that the vectors ~u1, ~u2, . . . , ~ua, ~v1, ~v2, . . . , ~vb,

~w1, ~w2, . . . , ~wc are linearly independent.

Since a+ b+ c = n, we have shown that ~u1, ~u2, . . . , ~ua, ~v1, ~v2, . . . ,

~vb, ~w1, ~w2, . . . , ~wc is a basis of Rn. QED


