Algebraic and Geometric Multiplicity: Proofs

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let a_i be the algebraic multiplicity of λ_i . Let V_i be the λ_i -eigenspace and let $g_i = \dim V_i$, the geometric multiplicity of λ_i . **Theorem 1:** We have $\sum g_i = n$ if and only if A has an eigenbasis. **Theorem 2:** We have $g_i \leq a_i$.

Theorem 3: We have $\sum a_i \leq n$, and $\sum a_i = n$ if and only if $\det(A - t \operatorname{Id})$ factors completely into linear terms.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let a_i be the algebraic multiplicity of λ_i . Let V_i be the λ_i -eigenspace and let $g_i = \dim V_i$, the geometric multiplicity of λ_i . **Theorem 1:** We have $\sum g_i = n$ if and only if A has an eigenbasis. **Theorem 2:** We have $g_i \leq a_i$. **Theorem 3:** We have $\sum a_i \leq n$, and $\sum a_i = n$ if and only if

det(A - tId) factors completely into linear terms.

We told the story in the order that explains the importance of the results, but the proofs are easiest in the reverse order.

Theorem 3: We have $\sum a_i \leq n$, and $\sum a_i = n$ if and only if $\det(A - t \operatorname{Id})$ factors completely into linear terms.

Theorem 3: We have $\sum a_i \leq n$, and $\sum a_i = n$ if and only if $\det(A - t \operatorname{Id})$ factors completely into linear terms.

We have

 $\det(A - t \mathrm{Id}) = \prod_{i} (\lambda_i - t)^{a_i} \cdot \text{(some polynomial with no roots)}.$

So

$$\deg \det(A - t \mathrm{Id}) = n \ge \sum a_i.$$

We have equality if and only if det(A - tId) factors into linear terms. **QED**

Theorem 2: We have $g_i \leq a_i$.

Theorem 2: We have $g_i \leq a_i$.

To make notation simpler, abbreviate λ_i to λ , g_i to g and a_i to a.

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g$ be a basis for the λ -eigenspace. We want to show that $(\lambda - t)^g$ divides the characteristic polynomial.

Complete $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g$ to a basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_{n-g})$ for \mathbb{R}^n .

Complete $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g$ to a basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_{n-g})$ for \mathbb{R}^n . In the coordinates of the basis \mathfrak{B} , the matrix of A looks like

Complete $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g$ to a basis $\mathfrak{B} = (\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_g, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_{n-g})$ for \mathbb{R}^n . In the coordinates of the basis \mathfrak{B} , the matrix of A looks like

$$\begin{bmatrix} \lambda & & & \\ \lambda & & & \\ & \ddots & & \\ & & \lambda & \\ \hline & 0 & & C \end{bmatrix}$$

So

$$A - t \operatorname{Id}_{n} = \begin{bmatrix} \lambda - t & & & \\ & \lambda - t & & \\ & & \ddots & & \\ & & \lambda - t & \\ \hline & 0 & & C - t \operatorname{Id}_{n-g} \end{bmatrix}$$

$$\det(A - t \operatorname{Id}_n) = \det \begin{bmatrix} \lambda - t & B \\ \ddots & B \\ 0 & C - t \operatorname{Id}_{n-g} \end{bmatrix}$$
$$= (\lambda - t)^g \det(C - t \operatorname{Id}_{n-g}). \quad \mathbf{QED}$$

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

First of all, suppose that A has an eigenbasis: $\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_n$.

For each λ_i , let h_i be the number of \vec{x}_i which are λ_i -eigenvectors. So $n = \sum h_i$.

The λ_i -eigenvectors are contained in V_i , so the number of them is at most dim V_i . So $h_i \leq g_i$.

So $n = \sum h_i \leq \sum g_i$. But we also already noted that $\sum g_i \leq \sum a_i \leq n$. So $\sum g_i = n$.

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

Finally, suppose that $\sum g_i = n$.

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

Finally, suppose that $\sum g_i = n$.

The notation for this one gets hairy, so let's rename things.

Let's suppose there are 3 eigenvalues: α , β , γ .

Let the eigenspaces be U, V and W.

Let the geometric multiplicities be $a = \dim U$, $b = \dim V$, $c = \dim W$, with a + b + c = n.

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

Finally, suppose that $\sum g_i = n$.

The notation for this one gets hairy, so let's rename things.

Let's suppose there are 3 eigenvalues: α , β , γ .

Let the eigenspaces be U, V and W.

Let the geometric multiplicities be $a = \dim U$, $b = \dim V$, $c = \dim W$, with a + b + c = n.

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W.

Theorem 1: We have $\sum g_i = n$ if and only if A has an eigenbasis.

Finally, suppose that $\sum g_i = n$.

The notation for this one gets hairy, so let's rename things.

Let's suppose there are 3 eigenvalues: α , β , γ .

Let the eigenspaces be U, V and W.

Let the geometric multiplicities be $a = \dim U$, $b = \dim V$, $c = \dim W$, with a + b + c = n.

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W.

These are eigenvectors, so our goal will be to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n .

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W. Our goal is to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n .

Since a + b + c = n, we just need to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ are linearly independent.

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W. Our goal is to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n .

Since a + b + c = n, we just need to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ are linearly independent.

Suppose that we had a linear relation:

 $f_1\vec{u}_1 + \dots + f_a\vec{u}_a + g_1\vec{v}_1 + \dots + g_b\vec{v}_b + h_1\vec{w}_1 + \dots + h_c\vec{w}_c = \vec{0}.$

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W. Our goal is to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n .

Since a + b + c = n, we just need to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ are linearly independent.

Suppose that we had a linear relation:

 $\overbrace{f_1\vec{u}_1 + \dots + f_a\vec{u}_a}^{\alpha - \text{eigenvector}} + \overbrace{g_1\vec{v}_1 + \dots + g_b\vec{v}_b}^{\beta - \text{eigenvector}} + \overbrace{h_1\vec{w}_1 + \dots + h_c\vec{w}_c}^{\gamma - \text{eigenvector}} = \vec{0}.$

Let $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ be a basis of U; let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b$ be a basis of Vand let $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ be a basis of W. Our goal is to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n . Since a + b + c = n, we just need to show that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ are linearly independent.

Suppose that we had a linear relation:

$$\underbrace{\alpha-\text{eigenvector}}_{f_1\vec{u}_1+\cdots+f_a\vec{u}_a} + \underbrace{\beta-\text{eigenvector}}_{g_1\vec{v}_1+\cdots+g_b\vec{v}_b} + \underbrace{\gamma-\text{eigenvector}}_{h_1\vec{w}_1+\cdots+h_c\vec{w}_c} = \vec{0}.$$

Since α , β and γ are distinct, we must have

$$f_1 \vec{u}_1 + \dots + f_a \vec{u}_a = g_1 \vec{v}_1 + \dots + g_b \vec{v}_b = h_1 \vec{w}_1 + \dots + h_c \vec{w}_c = \vec{0}.$$

$$f_1\vec{u}_1 + \dots + f_a\vec{u}_a = g_1\vec{v}_1 + \dots + g_b\vec{v}_b = h_1\vec{w}_1 + \dots + h_c\vec{w}_c = \vec{0}.$$

But, since $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a$ is a basis of U, this means that $f_1 = \cdots = f_a = 0$.

Similarly, $g_1 = \cdots = g_b = 0$ and $h_1 = \cdots = h_c = 0$.

We have shown that all the coefficients of our linear relation are 0. So we have shown that the vectors $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ are linearly independent.

Since a + b + c = n, we have shown that $\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_a, \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_b, \vec{w}_1, \vec{w}_2, \ldots, \vec{w}_c$ is a basis of \mathbb{R}^n . **QED**