Algebraic and Geometric Multiplicity: Proofs

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}. Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.

Theorem 2: We have $g_{i} \leq a_{i}$.
Theorem 3: We have $\sum a_{i} \leq n$, and $\sum a_{i}=n$ if and only if $\operatorname{det}(A-t \mathrm{Id})$ factors completely into linear terms.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.

Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
Theorem 2: We have $g_{i} \leq a_{i}$.
Theorem 3: We have $\sum a_{i} \leq n$, and $\sum a_{i}=n$ if and only if $\operatorname{det}(A-t \mathrm{Id})$ factors completely into linear terms.

We told the story in the order that explains the importance of the results, but the proofs are easiest in the reverse order.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 3: We have $\sum a_{i} \leq n$, and $\sum a_{i}=n$ if and only if $\operatorname{det}(A-t \mathrm{Id})$ factors completely into linear terms.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 3: We have $\sum a_{i} \leq n$, and $\sum a_{i}=n$ if and only if $\operatorname{det}(A-t \mathrm{Id})$ factors completely into linear terms.

We have

$$
\operatorname{det}(A-t \mathrm{Id})=\prod_{i}\left(\lambda_{i}-t\right)^{a_{i}} \cdot(\text { some polynomial with no roots })
$$

So

$$
\operatorname{deg} \operatorname{det}(A-t \mathrm{Id})=n \geq \sum a_{i}
$$

We have equality if and only if $\operatorname{det}(A-t \mathrm{Id})$ factors into linear terms. QED

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 2: We have $g_{i} \leq a_{i}$.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 2: We have $g_{i} \leq a_{i}$.
To make notation simpler, abbreviate λ_{i} to λ, g_{i} to g and a_{i} to a. Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ be a basis for the λ-eigenspace. We want to show that $(\lambda-t)^{g}$ divides the characteristic polynomial.

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ be a basis for the λ-eigenspace. We want to show that $(\lambda-t)^{g}$ divides the characteristic polynomial.

Complete $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ to a basis
$\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n-g}\right)$ for \mathbb{R}^{n}.

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ be a basis for the λ-eigenspace. We want to show that $(\lambda-t)^{g}$ divides the characteristic polynomial.

Complete $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ to a basis
$\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n-g}\right)$ for \mathbb{R}^{n}. In the coordinates of the basis \mathfrak{B}, the matrix of A looks like

$$
\left[\begin{array}{lll|l}
{ }^{\lambda} & & & \\
& \lambda & & \\
& & \ddots & ? \\
& & \lambda & \\
\hline & 0 & & ?
\end{array}\right]
$$

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ be a basis for the λ-eigenspace. We want to show that $(\lambda-t)^{g}$ divides the characteristic polynomial.

Complete $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ to a basis
$\mathfrak{B}=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{n-g}\right)$ for \mathbb{R}^{n}. In the coordinates of the basis \mathfrak{B}, the matrix of A looks like

$$
\left[\begin{array}{lll|l}
\lambda & & & \\
& \lambda & & B \\
& \ddots & & \\
& & \lambda & \\
\hline & 0 & & C
\end{array}\right]
$$

So

$$
A-t \operatorname{Id}_{n}=\left[\begin{array}{ccc|c}
\lambda-t & & & \\
& & & \\
& & \ddots_{\lambda-t} & \\
& 0 & & C-t \operatorname{Id}_{n-g}
\end{array}\right]
$$

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{g}$ be a basis for the λ-eigenspace. We want to show that $(\lambda-t)^{g}$ divides the characteristic polynomial.

$$
\begin{aligned}
& \operatorname{det}\left(A-t \operatorname{Id}_{n}\right)=\operatorname{det}\left[\begin{array}{ccc|c}
\lambda-t & & & \\
& & \ddots & \\
& & & \\
& & & \\
& & & \\
\hline & & \\
& (\lambda-t-t)^{g} \operatorname{det}\left(C-t \operatorname{Id}_{n-g}\right.
\end{array}\right] \\
& \text { QED }
\end{aligned}
$$

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
First of all, suppose that A has an eigenbasis: $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$.
For each λ_{i}, let h_{i} be the number of \vec{x}_{i} which are λ_{i}-eigenvectors.
So $n=\sum h_{i}$.
The λ_{i}-eigenvectors are contained in V_{i}, so the number of them is at most $\operatorname{dim} V_{i}$. So $h_{i} \leq g_{i}$.

So $n=\sum h_{i} \leq \sum g_{i}$. But we also already noted that
$\sum g_{i} \leq \sum a_{i} \leq n$. So $\sum g_{i}=n$.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.

Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
Finally, suppose that $\sum g_{i}=n$.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.
Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
Finally, suppose that $\sum g_{i}=n$.
The notation for this one gets hairy, so let's rename things.
Let's suppose there are 3 eigenvalues: α, β, γ.
Let the eigenspaces be U, V and W.
Let the geometric multiplicities be $a=\operatorname{dim} U, b=\operatorname{dim} V$,
$c=\operatorname{dim} W$, with $a+b+c=n$.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}.

Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
Finally, suppose that $\sum g_{i}=n$.
The notation for this one gets hairy, so let's rename things.
Let's suppose there are 3 eigenvalues: α, β, γ.
Let the eigenspaces be U, V and W.
Let the geometric multiplicities be $a=\operatorname{dim} U, b=\operatorname{dim} V$,
$c=\operatorname{dim} W$, with $a+b+c=n$.
Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W.

Let A be an $n \times n$ square matrix with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. Let a_{i} be the algebraic multiplicity of λ_{i}. Let V_{i} be the λ_{i}-eigenspace and let $g_{i}=\operatorname{dim} V_{i}$, the geometric multiplicity of λ_{i}. Theorem 1: We have $\sum g_{i}=n$ if and only if A has an eigenbasis.
Finally, suppose that $\sum g_{i}=n$.
The notation for this one gets hairy, so let's rename things.
Let's suppose there are 3 eigenvalues: α, β, γ.
Let the eigenspaces be U, V and W.
Let the geometric multiplicities be $a=\operatorname{dim} U, b=\operatorname{dim} V$, $c=\operatorname{dim} W$, with $a+b+c=n$.

Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W.

These are eigenvectors, so our goal will be to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots$, $\vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}.

Let's suppose there are 3 eigenvalues: α, β, γ. Let the eigenspaces be U, V and W. Let the geometric multiplicities be $a=\operatorname{dim} U$, $b=\operatorname{dim} V, c=\operatorname{dim} W$, with $a+b+c=n$.
Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W. Our goal is to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}.
Since $a+b+c=n$, we just need to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}$, $\vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ are linearly independent.

Let's suppose there are 3 eigenvalues: α, β, γ. Let the eigenspaces be U, V and W. Let the geometric multiplicities be $a=\operatorname{dim} U$, $b=\operatorname{dim} V, c=\operatorname{dim} W$, with $a+b+c=n$.
Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W. Our goal is to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}.
Since $a+b+c=n$, we just need to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}$, $\vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ are linearly independent.

Suppose that we had a linear relation:

$$
f_{1} \vec{u}_{1}+\cdots+f_{a} \vec{u}_{a}+g_{1} \vec{v}_{1}+\cdots+g_{b} \vec{v}_{b}+h_{1} \vec{w}_{1}+\cdots+h_{c} \vec{w}_{c}=\overrightarrow{0} .
$$

Let's suppose there are 3 eigenvalues: α, β, γ. Let the eigenspaces be U, V and W. Let the geometric multiplicities be $a=\operatorname{dim} U$, $b=\operatorname{dim} V, c=\operatorname{dim} W$, with $a+b+c=n$.
Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W. Our goal is to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}.
Since $a+b+c=n$, we just need to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}$, $\vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ are linearly independent.

Suppose that we had a linear relation:

$$
\overbrace{f_{1} \vec{u}_{1}+\cdots+f_{a} \overrightarrow{u_{a}}}^{\alpha \text {-eigenvector }}+\overbrace{g_{1} \vec{v}_{1}+\cdots+g_{b} \vec{v}_{b}}^{\beta \text {-eigenvector }}+\overbrace{h_{1} \vec{w}_{1}+\cdots+h_{c} \overrightarrow{w_{c}}}^{\gamma-\text { eigenvector }}=\overrightarrow{0} .
$$

Let's suppose there are 3 eigenvalues: α, β, γ. Let the eigenspaces be U, V and W. Let the geometric multiplicities be $a=\operatorname{dim} U$, $b=\operatorname{dim} V, c=\operatorname{dim} W$, with $a+b+c=n$.
Let $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ be a basis of U; let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$ be a basis of V and let $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ be a basis of W. Our goal is to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}.
Since $a+b+c=n$, we just need to show that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}$, $\vec{v}_{2}, \ldots, \vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ are linearly independent.
Suppose that we had a linear relation:

$$
\overbrace{f_{1} \vec{u}_{1}+\cdots+f_{a} \vec{u}_{a}}^{\alpha \text {-eigenvector }}+\overbrace{g_{1} \vec{v}_{1}+\cdots+g_{b} \vec{v}_{b}}^{\beta \text {-eigenvector }}+\overbrace{h_{1} \vec{w}_{1}+\cdots+h_{c} \vec{w}_{c}}^{\gamma-\text { eigenvector }}=\overrightarrow{0} .
$$

Since α, β and γ are distinct, we must have

$$
f_{1} \vec{u}_{1}+\cdots+f_{a} \vec{u}_{a}=g_{1} \vec{v}_{1}+\cdots+g_{b} \vec{v}_{b}=h_{1} \vec{w}_{1}+\cdots+h_{c} \vec{w}_{c}=\overrightarrow{0} .
$$

$$
f_{1} \vec{u}_{1}+\cdots+f_{a} \vec{u}_{a}=g_{1} \vec{v}_{1}+\cdots+g_{b} \vec{v}_{b}=h_{1} \vec{w}_{1}+\cdots+h_{c} \vec{w}_{c}=\overrightarrow{0} .
$$

But, since $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}$ is a basis of U, this means that
$f_{1}=\cdots=f_{a}=0$.
Similarly, $g_{1}=\cdots=g_{b}=0$ and $h_{1}=\cdots=h_{c}=0$.
We have shown that all the coefficients of our linear relation are 0 . So we have shown that the vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{b}$, $\vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ are linearly independent.

Since $a+b+c=n$, we have shown that $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{a}, \vec{v}_{1}, \vec{v}_{2}, \ldots$, $\vec{v}_{b}, \vec{w}_{1}, \vec{w}_{2}, \ldots, \vec{w}_{c}$ is a basis of \mathbb{R}^{n}. QED

